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THEORIE DE LA RELATIVITE RESTREINTE :  
METHODE DES DIAGRAMMES D’ESPACE - TEMPS 

 
1. Introduction 
La méthode du facteur k de Bondi, que nous avons étudiée précédemment, 
est illustrée par des diagrammes mais ces derniers ne sont dessinés que 
pour éclairer les raisonnements et ne s’appuient sur aucun graphique 
pour se déployer. 
 
Les diagrammes que nous allons voir maintenant sont des représentations 
géométriques de la métrique pseudo-euclidienne de l’espace-temps de la 
relativité restreinte permettant de retrouver les différentes 
expressions caractéristiques de cette théorie. La construction et les 
propriétés d’un tel diagramme résultent des postulats de la relativité 
restreinte et des propriétés de l'espace-temps, notion proposée en 
premier par H. Minkowski1. Ils illustrent alors graphiquement les 
relations profondes entre l'espace et le temps, contenues dans la 
théorie de la relativité restreinte. 
 
Un diagramme espace-temps permet donc de représenter un événement (E) de 
coordonnées (x,t) dans un repère galiléen (R) et de coordonnées (x’, t’) 
dans un autre repère galiléen (R’) en mouvement rectiligne uniforme de 
vitesse V par rapport à (R). Dans tous les cas on considèrera que les 
origines O et O’ des deux repères sont confondues à l’instant initial où 
t=t’= 0. 
 
Pour construire le diagramme espace-temps on choisit comme axes du 
diagramme les quantités x et x’ en abscisses, ct et ct’ en ordonnées. On 
peut alors définir la ligne d’univers d’un objet qui représente 
l’histoire de ce dernier, c’est à dire la succession des événements 
attachés à cet objet.  
 
Il existe essentiellement trois types de diagramme qui se distinguent 
par la manière dont sont définis et tracés les axes. Ces derniers, comme 
pour la méthode de Bondi, se limitent à une seule dimension spatiale x 
et x’  et à la dimension temporelle t et t’. Leur construction s’appuie 
sur la transformation de Lorentz avec les relations suivantes : 

 
 
 (1) avec  
 
 

2. Diagramme de Minkowski 
Il est proposé par Herman Minkowski en 1908. Il s’agit d’une 
représentation dans laquelle le référentiel (R) est considéré au repos 
et le second (R') en mouvement rectiligne uniforme avec une vitesse2 V  
par rapport à (R). De ce fait, le diagramme de Minkowski est construit 
en donnant à (R) des axes orthogonaux. La première bissectrice 
représente la ligne d’univers d’un rayon lumineux. Les deux équations 
(1) entraînent que les points tels que ct’ = 0 sont donnés, dans (R), 
par la droite d’équation c.t = ββββ.x et les points tels que x’ = 0 sont 
sur la droite d’équation x = ββββ.c.t. Les deux droites obtenues 

                                                 
1 Hermann Minkowski (1864 / 1909) est un mathématicien allemand. Il fut professeur de Albert 
Einstein à Zurich lorsque ce dernier était étudiant à l’Ecole  Polytechnique Fédérale de 1896 à 1900 
2 Cette dernière peut être positive -(R’) s’éloigne de (R) - ou négative dans le cas contraire. 
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correspondent aux axes3 Oct’ et Ox’ et sont symétriques par rapport à la 
première bissectrice. L’angle α que font entre eux les axes (O.ct, 
O,ct’) et (Ox, Ox’) est tel que : 

 
Remarquons que cette représentation est asymétrique car elle privilégie 
le repère (R), considéré au repos par rapport à (R’), ce qui n’est pas 
conforme à l’esprit de la relativité restreinte.   

 
On a représenté, dans le diagramme de Minkowski dessiné ci dessus, un 
événement (E) avec ses coordonnées, construites en menant des parallèles 
aux axes dans les deux repères (x,c.t) et (x’,c.t’). 
 
On a déjà cité un défaut de ce type de diagramme – son asymétrie de 
traitement entre (R) et (R’) – mais il en a un autre peut être plus 
grave : les unités sur les axes ct’ et x’ sont plus grandes que celle 
sur les axes ct et x. Montrons le : 
 
A partir du diagramme on peut écrire les relations suivantes4 : 

                                                 
3 On ne confondra pas l’origine O du référentiel (R) et l’origine O du diagramme d’espace-temps. 
4 La démonstration suivante manipule les longueurs mesurées sur le diagramme de Minkowski et non pas 
les valeurs des grandeurs elles-mêmes de temps et de distance. Par exemple on sait qu’en relativité 
restreinte l’intervalle d’espace-temps ∆s2 est un invariant donc ∆s2 = ∆s’2. Les longueurs 
correspondantes de la représentation graphique de ces deux quantités n’obéit pas à cette relation du 
fait que les unités dans le repère (O,x,t) ne sont pas les mêmes que celles du repère (O,x’,t’). 
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Il en est de même pour les intervalles et nous avons : 

 
Formons le ∆s2 et exprimons le en fonction du ∆s’2 : 

 
Après développement on obtient : 

 
Or nous avons : 

Finalement : 

 
Pour retrouver des intervalles égaux il faut donc appliquer entre les 
mesures géométriques faites sur les deux axes un facteur d’échelle ε dont 
la valeur est donnée par l’expression : 
 
 
 

 
Le diagramme de Minkowski permet de 
retrouver toutes expressions 
habituelles de la relativité 
restreinte. Voyons, par exemple, 
comment on peut retrouver, la 
dilatation des intervalles de 
temps.  
 
Sur le diagramme, à gauche, on a 
représenté un intervalle c.∆t’0 
d’une unité de l’axe ct’ et sa 
correspondance c.∆t sur l’axe ct du 
repère (O,x,ct). Pour cela on trace 
les parallèles à l’axe Ox passant 
par les extrémités 1 et 2 du 
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segment c.∆t’0. Nous pouvons écrire pour les longueurs λ12 et λ’12 de ces 
segments : 
 

 
  et avec ε:  
 

 
Montrons que la relation est la même si on exprime le temps propre ∆t0 
dans (R) en fonction du ∆t’ dans le repère (R’) (points entre 3 et 4) 
pour un intervalle de temps entre deux événements vus respectivement par 
un observateur de (R) et de (R’). Pour cela raisonnons sur la figure ci 
dessous : 

Considérons les triangles rectangles OAC et 
OBD. Nous pouvons écrire dans chacun d’eux : 
 

Donc : 
 
 
 et avec ε :  
 
 

Finalement, sachant que cos(2α)/cos(α)=[1 - tan2(α)] / [1 + tan2(α)]1/2 : 
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Le diagramme de Minkowski permet donc bien de retrouver la réciprocité 
de la dilatation des durées. Il en est de même pour la contraction des 
longueurs et la relativité de la simultanéité. 
 
Cependant, comme on l’a déjà indiqué, le diagramme de Minkowski souffre 
de plusieurs défauts : 
� Les deux référentiels sont traités différemment (l’un des repère est 

rectangulaire alors que l’autre est oblique) 
� Les unités sur les axes ne sont pas les mêmes et nécessitent donc 

l’utilisation d’un facteur d’échelle pour passer de l’un des repères à 
l’autre. 

 Ce dernier point peut être 
illustré en représentant dans un 
tel diagramme un objet au repos 
dans le repère (R) dans lequel sa 
longueur est l0 alors qu’elle a 
pour valeur l’ dans le repère en 
mouvement (R’). 
 
Les deux lignes parallèles à l’axe 
ct représentent les lignes 
d’univers des extrémités de l’objet 
au repos dans (R). Ces extrémités 
ont donc, dans ce repère, des 
coordonnées constantes. 
On a alors : 
 

l0 = xB – xA 

 
Quelle procédure de mesure doit-on mettre en place pour obtenir sa 
longueur l dans le repère (R’) ? La réponse est simple : il faut mesurer 
la position des deux extrémités au même instant t’, mesuré dans le 
repère (R’). 
 
N’importe quelle ligne, parallèle à l’axe x’ et représentant une 
quantité t’ = constante, convient et va couper les deux lignes d’univers 
des extrémités de l’objet en deux points A et B du diagramme de 
Minkowski. Ces deux événements ont pour coordonnées, dans le système 
(x’,t’), les couples (x’A,t’) et (x’B,t’) avec la même valeur de t’ pour 
chacun d’eux. La longueur de l’objet mesurée dans (R’) a donc pour 
valeur la quantité l’ = (x’B – x’A).  
 
Mesurées dans (R), les coordonnées sur l’axe des x de ces deux 
événements sont respectivement égale à xA et xB, et sont indépendantes de 
l'instant t déterminé dans (R). De ce fait, en appliquant la 
transformation de Lorentz [symétrique de celle présentée en (1)] 
exprimant x en fonction de x’ et t’, nous pouvons écrire5 : 

 
Par conséquent : 
 

                                                 
5 Il suffit de remplacer les grandeurs primées par celles qui ne le sont pas et de changer le signe 
de β 
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Finalement : 

 
On retrouve donc bien la contraction relativiste des longueurs.  
 
Cependant, en regardant trop rapidement le diagramme dessiné sur la page 
précédente, on peut être induit en erreur car il y apparaît que l’, 
représentée par la distance (x’B - x’A), est plus grande que l0, 
représentée par (xB – xA). Mais il faut se souvenir que, dans le 
diagramme de Minkowski, les unités des axes correspondants n’ont pas la 
même longueur et qu’il faut donc leur appliquer un facteur d’échelle ε. 
Si on prend cela en compte, la mesure de l’ est toujours plus petite que 
celle de l0. 
 
3. Diagramme de Brehme ou Lorentz 
Les inconvénients du diagramme précédent ont amené les scientifiques à 
proposer d’autres types de représentation. Parmi celles-ci nous 
retiendrons tout d’abord le diagramme proposé par Robert Brehme en 1968, 
et qu’il proposa d’appeler diagramme de Lorentz. 
Pour cela, nous pouvons réécrire les deux relations (1) différemment : 
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seconde du groupe (1) 
 
 
Sachant que (1/γγγγ)2 + ββββ2222 = 1 on peut poser ββββ = sin(αααα) et (1/γγγγ) = cos(αααα) ce 
qui nous donne pour les relations ci dessus : 

 
Ces relations de transformation correspondent donc à une rotation 
d’angle αααα6666 entre les systèmes d’axes (x’,ct) et (x,ct’). En prenant le 
système (x’,ct) avec ses deux axes perpendiculaires, il en sera de même 
du système (x,ct’). On obtient alors notre diagramme de Lorentz dans 
lequel les deux référentiels (R) et (R’) sont représentés graphiquement 
par le système de coordonnées (O,x,ct) et (O,x’,ct’), les deux origines 
étant, comme dans le diagramme de Minkowski, confondus. 
 
Pour obtenir les coordonnées d’un événement on peut projeter son point 
représentatif soit perpendiculairement soit parallèlement aux axes. Pour 
le diagramme de Lorentz on le fait perpendiculairement. On a donc, au 
final, la construction suivante : on trace tout d’abord deux lignes de 
référence, l’une horizontale et l’autre verticale, qui vont nous 

                                                 
6 L’angle α du diagramme de Lorentz est différent, pour une même vitesse V, de celui du diagramme de 
Minkowski car, dans le premier cas, β = sin(α) alors que dans le second β = tan(α). Par exemple si 
nous avons β = 0,99, α vaut pour le diagramme de Lorentz et  pour celui de Minkowski. 
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permettre de tracer les axes ct et ct’ symétriques par rapport à la 
référence verticale et les axes x et x’ également symétriques par 
rapport à la référence horizontale. Le résultat de ce tracé est alors : 
 

 
On constate bien, dans cette construction, la symétrie entre les deux 
systèmes de coordonnées : aucun n’a une position privilégiée par rapport 
à l’autre, ce qui respecte bien l’esprit de la relativité restreinte. 
Comme pour le diagramme de Minkowski, la ligne d’univers de la lumière 
est une droite – en vert sur la figure – qui fait un angle de 45° avec 
la ligne horizontale en pointillé. 
 
Mettons en œuvre ce diagramme pour démontrer l’invariance de 
l’intervalle d’espace-temps ∆s2 tel que : 

222 xt.cs ∆−∆=∆
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Géométriquement, nous pouvons écrire : 

 
∆s2 est bien un invariant puisque le choix de nos référentiel (R) et (R’) 
est quelconque. 
 
Utilisons le diagramme de Lorentz au cas de l’étude de la désintégration 
des muons atmosphériques. 

 
E1 représente l’événement associé à la création de cette particule et E2 
celui attaché à sa désintégration au niveau du sol. 
 
Considérons le muons au repos dans le repère (R) et le repère (R’) 
attaché au sol, dans lequel le point de l’atmosphère où est créé le muon 
ainsi que le point au sol où il se désintègre sont au repos.  
Les deux événements E1 et E2 sont séparés par un intervalle d’espace-
temps dont les composantes, respectivement dans les repères (R) et (R’), 
sont (c.∆t,∆x) et (c.∆t’,∆x’). La valeur de ∆t représente la durée de 
vie propre du muon dans (R) puisqu’il se désintègre en arrivant au sol. 
Dans le référentiel terrestre (R’) la quantité ∆x’ représente la 
distance parcourue par le muon et ∆x est l’épaisseur de l’atmosphère, 
mesurée dans (R) par un voyageur accompagnant le muon. ∆x est donc, dans 
le repère du muon, la distance, mesurée au même instant, entre le point 
de sa création et celui de sa désintégration. 
La figure nous permet alors d’écrire : 

 
 
avec  
 
 

Donc ∆∆∆∆t’ > ∆∆∆∆t 
De même nous avons : 
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Donc ∆∆∆∆x’ < ∆∆∆∆x 
 
Dans le repère terrestre la durée de vie d’un muon est donc augmentée 
et, dans le repère du muon, l’épaisseur de l’atmosphère est diminuée. 
 
4. Diagramme de Loedel 
Il y a également celui imaginé par Enrique Loedel Palumbo en 1957. Ce 
dernier ressemble au précédent et est construit de la même façon mais la 
projection sur les axes se fait parallèlement à ces derniers et non pas 
perpendiculairement. De ce fait il est nécessaire d’intervertir, par 
rapport au diagramme de Lorentz, la position des systèmes d’axes des 
deux référentiels en mouvement relatif. 

 
 
La figure ci dessus montre comment obtenir les coordonnées d’un 
événement dans chacun des deux systèmes d’axes. 
 
Utilisons ce type de diagramme pour démontrer la loi de composition des 
vitesses en relativité restreinte. Supposons qu’un objet ait une vitesse 
U’ par rapport à un référentiel (R’) qui est lui-même en mouvement 
rectiligne uniforme, avec la vitesse V, par rapport à un référentiel 
inertiel (R), comme indiqué sur la figure ci-dessous. 
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Nous cherchons donc la vitesse U de la particule par rapport au 
référentiel (R). En physique classique, il découle de la  transformation 
de Galilée que U = U’ + V. Ce résultat n’est plus valable dans le cadre 
de la relativité restreinte. À l’aide du diagramme de Loedel, cherchons 
la nouvelle expression de V. 
 
La ligne d’univers d’une particule se déplaçant à vitesse constante U 
dans (R’) est une droite dans un diagramme d’espace-temps. Sur cette 
ligne d’univers, prenons deux événements E1 et E2,  représentant la 
position de l’objet à deux instants différents. 

 
Représentons maintenant sur ce diagramme les intervalles spatiaux ∆x et 
∆x’ et les intervalles temporels ∆t et ∆t’ entre ces deux événements, 
dans les référentiels (R) et (R’). 
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Sur cette figure, nous voyons que  le triangle rectangle E1H1A, 
d’hypoténuse ∆x, est semblable au triangle rectangle E2H2A, d’hypoténuse 
c.∆t. Par conséquent, le rapport des hypoténuses de ces deux triangles 
est égal au rapport de leur coté adjacente à l’angle α. On peut donc 
écrire : 

 
Le membre de gauche peut s’écrire : 

 
De même nous avons : 

 
 
De plus, nous savons que, pour le diagramme de Loedel, nous avons : 

 
La première équation s’écrit alors : 
 

 
On retrouve bien ici la formule relativiste de composition des vitesses. 
 
5. Question de cinématique traité avec un diagramme 
Les coordonnées x d’espace et t de temps de deux événements E1 et E2, 
mesurées dans un référentiel (R) sont (y = z = 0 dans les deux cas):  

• x1 = x0 ,  t1 = x0/c (événement 1) 
• x2 = 2x0, t2 = x0/2c (événement 2)  

 
a) Il existe un référentiel (R’) où les deux événements se produisent 

en même temps. Quelle est la vitesse de ce référentiel par rapport 
à (R) ?  

 
b) Quelle est la valeur du temps t’ pour laquelle les deux événements 

ont lieu dans le nouveau référentiel (R’)?  
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Pour dessiner le diagramme, la difficulté est de connaître le sens du 
mouvement relatif entre (R) et (R’) : y a t’il éloignement (V > 0) ou 
rapprochement (V < 0) ?  
 
Vérifions que (R’) existe en calculant le ∆s2 entre E1 et E2 dans le 
référentiel (R) : 

 
 
 
Remplaçons ti et xi par leurs valeurs données dans le texte : 
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L’intervalle d’espace – temps, qui est un invariant en relativité 
restreinte, est donc négatif. Il est alors du genre espace. Dans ce cas 
nous savons qu’il existe un référentiel (R’) dans lequel les deux 
événements peuvent être simultanés. 
 
Voyons maintenant les deux cas correspondant au signe de V. Rappelons 
auparavant que sur les diagrammes, les axes Oct et Oct’, ainsi que Ox et 
Ox’, sont inversés lorsqu’on passe d’un rapprochement à un éloignement. 
Les deux graphiques ci-dessous représentent ces deux situations. On 
constate que, pour la première – c’est à dire V > 0 – il n’est pas 
possible d’avoir E1 et E2 simultanés dans (R’). 
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Raisonnons sur ce second diagramme. Si les deux événements E1 et E2 sont 
simultanés dans (R’) ils appartiennent à une droite ct’ = constante qui 
est perpendiculaire à l’axe t’. De ce fait l’angle β est droit et 
l’angle γ = (AÊ1E2) vaut alors α. 
Dans le triangle E1AE2 on peut écrire : 

De plus : 
 

Nous savons que sin(α) = V/c. Donc V = c/2 en module. 
Comme nous avons un mouvement de rapprochement, nous avons V < 0 et nous 
prendrons : 

 
Pour la question b) nous voyons, sur le diagramme, que : 

c.t’1 = c.t’2 = CE1 
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Or CE1 = E1A + AC avec : 

 
Nous avons également : 

Donc : 

 

 
On aurait, bien entendu, pu retrouver ces résultats en appliquant les 
transformations de Lorentz. L’intérêt du diagramme, ici, est de 
permettre de mieux comprendre ce qui est possible et ce qui ne l’est pas 
en relativité restreinte comme, par exemple, la question de la 
simultanéité des deux événements E1 et E2 qui, dans notre cas, n’est 
possible que pour un sens de déplacement des référentiels (R) et (R’) 
l’un par rapport à l’autre. 
 
6. Question d’électromagnétisme traité avec un diagramme 
Abordons ici une question plus physique relative à la nouvelle approche 
que nous avons en relativité restreinte du concept de champ magnétique. 
Par exemple, dans l’expérience de la boucle conductrice et de l’aimant, 
il n’est plus nécessaire de faire appel à deux théories différentes : 
celle de la force de Lorentz lorsque la boucle se déplace et que 
l’aimant est « fixe » et celle de l’apparition d’un champ électromoteur 
décrit par une des équations de Maxwell – celle dite de Maxwell – 
Faraday - lorsque la boucle est « fixe » et que l’aimant se déplace.  
 
Sans aborder des calculs assez longs, on peut montrer que l’existence 
d’un champ magnétique dans un référentiel dans lequel des charges 
électriques sont en mouvement relatif découle naturellement des 
équations de la relativité restreinte. On illustrera ensuite ceci à 
l’aide d’un diagramme espace – temps. 
 
Pour montrer comment la relativité restreinte introduit élégamment la 
notion de champ magnétique nous allons raisonner sur un modèle  
simpliste mais pertinent pour la question que nous traitons ici.  
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Considérons un fil électrique en cuivre infiniment long parcouru par un 
courant. Les ions Cu+ restent fixes dans le repère (R) du laboratoire et 
les électrons y sont en mouvement avec une vitesse V7. Que perçoit alors 
une charge électrique test de valeur q en mouvement avec la même vitesse 
V le long du fil et à une distance d de ce dernier ? Dans le repère (R) 
Les densités linéiques de charges positives et négatives dans le fil 
sont égales en valeur absolue et de signes contraires et valent ± λλλλ0. 
Cette distribution de charges va donc créer deux champs électriques de 
sens contraire et de même module8 (E+ = E- = 2kλλλλ0/d), au niveau de la 
charge q. De ce fait la force électrique sur q est nulle. Si q était au 
repos il n’y aurait rien de plus à écrire mais cette charge est en 
mouvement et on sait qu’elle doit être sensible à un champ magnétique. 
Pour découvrir quelque chose à propos de la force magnétique exercée sur 
q quand elle est observée dans (R), plaçons nous dans un référentiel 
(R’) qui se déplace avec la vitesse V par rapport à (R), comme on peut 
le voir sur la figure précédente. Dans (R’), la charge q est au repos, 
les électrons également, et les ions positifs sont en mouvement avec la 
vitesse –V. Du point de vue d’un observateur au repos dans (R’), la 
distance entre les électrons a augmenté et, de ce fait, la densité 
linéique λ- a diminué d’un facteur 1/γ. On a alors la relation λ- = λ0/γ. 
D’un autre côté, la contraction relativiste de la distance entre les 
ions positifs en mouvement entraîne une augmentation de la densité 
linéique λ+ d’un facteur γ. Sa nouvelle valeur est donnée par λ+ = γ.λ0, 
ce qui entraîne que, dans le référentiel (R’), les densités linéiques 
des charges positives et négatives du fil ne sont plus égales et 
opposées ! La charge q, au repos dans (R’), va donc ressentir 
l’influence d’un champ électrique E’ tel que : 
 
La force appliquée, dans le référentiel (R’), sur la charge q est 
alors : 

                                                 
7 Cette simplification peut être considérée comme grossière puisque, dans un conducteur, les 
électrons de conduction ont des vitesses dont le module et la direction sont de toute sorte. 
Cependant on peut dire que V est une vitesse de diffusion moyenne à l’équilibre et est associée au 
courant dans le fil. 
8 k est la constante 1/4πε0 de la loi de Coulomb. 
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Sachant que F’ est soit attractive soit répulsive selon le signe de q et 
qu’elle n’a qu’une composante F’y

9
 qui est perpendiculaire à l’axe du fil. 

Revenons maintenant dans le repère habituel (R) pour déterminer la loi 
de force magnétique subie par q en utilisant la transformation des 
forces en dynamique relativiste dans (R). 
 

 
Comme : 
 
 
 
 
 
Nous avons alors : 

 
Rappelons que E est l’amplitude du champ électrique, vu dans (R), soit 
des charges positives soit des charges négatives contenues dans le fil. 
Comme il n'y a pas de force électrique sur q dans (R), la force 
déterminée ici représente uniquement la force magnétique. Sa valeur est 
ββββ2 fois plus faible que la force électrique qu’exercerait seule soit une 
distribution de charges positives soit de charges négatives. Elle est 
perceptible, même pour des valeurs faibles de ββββ, car les forces 
électriques des deux distributions d’électrons et d’ions s’annulent 
rigoureusement. Son existence est directement liée ici à la contraction 
des longueurs en cinématique relativiste. 
 
Cette situation peut être interpréter très simplement dans un diagramme 
espace –temps. On choisira celui de Lorentz dans lequel on va pouvoir 
montrer directement qu’il apparaît une densité linéique de charges 
globale différente de zéro dans le repère où les électrons et la charge 
q sont au repos et les ions en mouvement. 
 
 

 
Les lignes d’univers des ions sont représentées par les lignes bleues 
parallèles à l’axe Oct et celles des électrons par les lignes rouges 
parallèles à l’axe Oct’ puisque, par simplification, on a choisi une 

                                                 
9 On ne détaille pas ici ce point qui nous emmènerait trop loin mais on peut le retrouver dans tous 
les ouvrages sur la relativité restreinte.  
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charge ayant la même vitesse V que les électrons qui sont au repos dans 
le repère (R’). 
 

 
 
 
 
Comme, en moyenne, le fil de cuivre est électriquement neutre, le nombre 
de ligne d’univers des ions attachées à chaque élément du conducteur est 
égal à celui des lignes d’univers des électrons. Dans le repère (R) nous 
avons δe = δi et donc λe = λi, ceci restant vrai quelque soit l’instant t 
considéré. 
 
Dans le référentiel (R’) la position des ions positifs et des électrons 
négatifs à l’instant t’ = 0 est donné par l’intersection de leurs lignes 
d’univers avec l’axe Ox’. On visualise immédiatement sur la figure que, 
dans (R’), la distance δ’e entre les électrons est plus grande que δ’i, 
distance entre les ions. Ceci reste vrai pour n’importe quel instant t’. 
De ce fait nous constatons que, dans (R’), la densité de charge des ions 
est plus grande que celle des électrons. Ceci entraîne qu’une charge q 
extérieure au fil et au repos dans (R’) subit une force électrique. 
Cette force, dans le repère (R), est perçue comme un champ magnétique.  
 
On peut montrer sans difficulté que le cas particulier que nous avons 
considéré ici (la charge q a la même vitesse V que les électrons dans le 
fil) peut se généraliser à celui où q a une vitesse U différente de V.  
 
L’expression de Fy devient simplement : 
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7. Conclusion : avantages et inconvénients de la méthode 

On peut discuter tout d'abord des outils mathématiques mis en œuvre dans 
ces différentes méthodes. Pour celle du facteur k on manipule 
exclusivement des expressions algébriques en s'aidant qualitativement de 
diagrammes espace-temps simplifiés sur lesquels aucun calcul n'est 
directement entrepris. L'algèbre étant en général bien maîtrisée par nos 
élèves, ils n'ont pas de difficultés particulières pour les comprendre, 
hormis la logique des expériences de pensée utilisées qui nécessite 
beaucoup d'attention. 
 
La démarche décrite ici s'appuie sur une représentation géométrique de 
la cinématique relativiste. Or, aujourd'hui, la géométrie n'est plus 
familière à nos élèves et, quelquefois, à nos collègues. Il n'est donc 
pas toujours facile à ce public de raisonner sur ces diagrammes et d'en 
saisir la mise en œuvre. On peut cependant contourner cette difficulté 
en les utilisant uniquement d'une manière graphique avec mesure d'angles 
et de longueurs. Ceci ne présente pas de difficulté particulière pour 
les digrammes de Lorentz et de Loedel, celui de Minkowski étant de 
manipulation plus délicate du fait de sa dissymétrie et de l'inégalité 
des longueurs représentant les unités des différents axes. 
 
Ces diagrammes ont également un avantage sur la méthode algébrique : 
comme le montrent les quelques exercices traités au cours des pages 
précédentes, ils permettent de représenter facilement une situation 
particulière et d'en déduire des résultats qualitatifs et quantitatifs. 
Ceci est plus malaisé dans le cas de la méthode proposé par H. Bondi qui 
l'avait développée essentiellement pour aider à mieux comprendre la 
relativité restreinte. 
 
 
 

Pierre MAGNIEN 
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