THEORIE DE LA RELATIVITE RESTREINTE :
METHODE DES DIAGRAMMES D'ESPACE - TEMPS

1. Introduction
La méthode du facteur k de Bondi, que nous avons étudiée précédemment,
est illustrée par des diagrammes mais ces derniers ne sont dessinés que
pour éclairer 1les raisonnements et ne s'appuient sur aucun graphique
pour se déployer.

Les diagrammes que nous allons voir maintenant sont des représentations
géométriques de la métrique pseudo-euclidienne de 1’espace-temps de la
relativité restreinte  permettant de retrouver les différentes
expressions caractéristiques de cette théorie. La construction et Tles
propriétés d’un tel diagramme résultent des postulats de la relativité
restreinte et des propriétés de 1'espace-temps, notion proposée en
premier par H. Minkowski!. 1Ils illustrent alors graphiquement les
relations profondes entre 1'espace et 1le temps, contenues dans la
théorie de la relativité restreinte.

Un diagramme espace-temps permet donc de représenter un événement (E) de
coordonnées (x,t) dans un repere galiléen (R) et de coordonnées (x', t')
dans un autre repere galiléen (R’) en mouvement rectiligne uniforme de
vitesse V par rapport a (R). Dans tous les cas on considerera que les
origines 0 et 0’ des deux reperes sont confondues a l’instant initial ou

t=t'= 0.

Pour construire 1le diagramme espace-temps on choisit comme axes du
diagramme les quantités x et x’ en abscisses, ct et ct’ en ordonnées. On
peut alors définir 1a 1ligne d’univers d’un objet qui représente
1'histoire de ce dernier, c’est a dire la succession des événements
attachés a cet objet.

Il existe essentiellement trois types de diagramme qui se distinguent
par la maniere dont sont définis et tracés les axes. Ces derniers, comme
pour la méthode de Bondi, se limitent a une seule dimension spatiale x
et x’ et a la dimension temporelle t et t’. Leur construction s'’appuie
sur la transformation de Lorentz avec les relations suivantes

ct=y(ct-Fx) (1) avec 1 et,b’:\i

X'=y(x-£ct) y:1/(1_32) C

2. Diagramme de Minkowski

I1T est proposé par Herman Minkowski en 1908. Il s’agit d’une
représentation dans laquelle le référentiel (R) est considéré au repos
et le second (R') en mouvement rectiligne uniforme avec une vitesse? V
par rapport a (R). De ce fait, le diagramme de Minkowski est construit
en donnant a (R) des axes orthogonaux. La premiére bissectrice
représente la ligne d’'univers d’un rayon lumineux. Les deux équations

(1) entrainent que les points tels que ct’ = 0 sont donnés, dans (R),
par la droite d'équation c.t = B.x et les points tels que x’ = 0 sont
sur la droite d’équation x = B.c.t. Les deux droites obtenues

1 Hermann Minkowski (1864 / 1909) est un mathématicien allemand. Il fut professeur de Albert
Einstein a Zurich lorsque ce dernier était étudiant a 1’Ecole Polytechnique Fédérale de 1896 a 1900
2 Cette derniére peut étre positive -(R’) s’éloigne de (R) - ou négative dans le cas contraire.
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correspondent aux axes® Oct’ et Ox’' et sont symétriques par rapport a la
premieére bissectrice. L’angle a que font entre eux les axes (0.ct,
0,ct’) et (0Ox, Ox") est tel que

X \Y
tan(a)=—=L0=—
ct C
Remarquons que cette représentation est asymétrique car elle privilégie
le repere (R), considéré au repos par rapport a (R’), ce qui n’est pas
conforme a 1'esprit de la relativité restreinte.

y C.t c.t'

[c-4(E) E

c.t'(E)

- X

O x(E)

On a représenté, dans le diagramme de Minkowski dessiné ci dessus, un
événement (E) avec ses coordonnées, construites en menant des paralleles
aux axes dans les deux reperes (x,c.t) et (x',c.t’).

On a déja cité un défaut de ce type de diagramme — son asymétrie de
traitement entre (R) et (R’) — mais il en a un autre peut étre plus
grave : les unités sur les axes ct’ et x’ sont plus grandes que celle
sur les axes ct et x. Montrons le

A partir du diagramme on peut écrire les relations suivantes’

3 0n ne confondra pas l'origine 0 du référentiel (R) et 1’origine O du diagramme d’espace-temps.
4 La démonstration suivante manipule les longueurs mesurées sur le diagramme de Minkowski et non pas
les valeurs des grandeurs elles-mémes de temps et de distance. Par exemple on sait qu’en relativité
restreinte 1’intervalle d’espace-temps As? est wun invariant donc As? = As’?., Les longueurs
correspondantes de la représentation graphique de ces deux quantités n’obéit pas a cette relation du
fait que les unités dans le repére (0,x,t) ne sont pas les mémes que celles du repere (0,x’,t’).
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X =X.cos(a)+ct.sin(a)

ct=x.sin(a)

+ct'.cos(a)

I1 en est de méme pour les intervalles et nous avons :

Ax = AX.cos(a)

+CcAt.sin(a)

cAt =AX'.sin(a )+ cAt'.cos(a)

Formons le As? et exprimons le en fonction du As’? :

AS® = (CAL)? - (Ax)?

= [AX.sin(a)+cAt'.cos(a)]? — [AX'.cos(a )+ cAt'. sin(a)]?

Apres développement on obtient :

As? = [cos’(a)-sin®(a)].[(cAt' ) — (X )?]

As® = [cos’(a)-sin*(a)].Ls ?
Or nous avons :

cos(a)-sin’(a)=

1-tan®(a) _1-3°

Finalement :

1+tan’(a) 1+5°

ASZ——l_’BZ As 2

= 1+ 7

Pour retrouver des intervalles égaux il faut donc appliquer entre les
mesures géométriques faites sur les deux axes un facteur d’échelle & dont

la valeur est donnée par 1’expression :

c.t
c.t'

R(EEYD)
V(1-5%)

Le diagramme de Minkowski permet de

retrouver toutes expressions
habituelles de la relativité
restreinte. Voyons, par exemple,
comment on peut retrouver, la
dilatation des intervalles de
temps.

Sur le diagramme, a gauche, on a
représenté un intervalle c.At',
d’une unité de 1'axe ct’' et sa

correspondance c.At sur l'axe ct du
repere (0,x,ct). Pour cela on trace
les paralleles a 1'axe Ox passant
par les extrémités 1 et 2 du
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segment c.At’,. Nous pouvons écrire pour les longueurs A, et A';, de ces

segments :
A,=A,,.cos(@) etavece: CAt= \/7“2; ct',.cos(a)

or cos(a)= ! -1
1+tan’(a) 1+ p°

(L+F) 1

A
Y 7 0 T—— = AN=———0
(1-5°) V1+p5° V(1-5%)

Montrons que la relation est 1la méme si on exprime le temps propre At,
dans (R) en fonction du At’ dans le repere (R’) (points entre 3 et 4)
pour un intervalle de temps entre deux événements vus respectivement par
un observateur de (R) et de (R'). Pour cela raisonnons sur la figure ci
dessous :

=

CAt =

=

Considérons les triangles rectangles OAC et
OBD. Nous pouvons écrire dans chacun d’eux :

c.t c.t'
oo | AC = OA.sin( AOC
X -os B = OA.sin( )
A avecAéC:a’+]—2T—2a:g—a
BD = OB.sin(BOD )
"D
X! avecBOD Z%T—Za
commeBD = AC nous pouvonsécrire :
o | X OB.sin(’—zT— 2a) = OA.sin(’—zT—a)
OB.cos(2a ) = OA.cos(a)
Donc :
cos(2a [(1+ 32
Ay = A 34.¥ et avec ¢ : CAt _—(1 F) cCAt' cos(2a)

cos(a) 0" [(1- 5?) " cos(a)

Finalement, sachant que cos(2a)/cos(a)=[1 - tan’(a)] / [1 + tan*(a)l*? :

A e ) el My
Ca-p) T e \/(1 7)
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Le diagramme de Minkowski permet donc bien de retrouver la réciprocité
de la dilatation des durées. Il en est de méme pour la contraction des
longueurs et la relativité de la simultanéité.

Cependant, comme on l’a déja indiqué, le diagramme de Minkowski souffre
de plusieurs défauts
> Les deux référentiels sont traités différemment (l’un des repere est
rectangulaire alors que l'autre est oblique)
> Les unités sur les axes ne sont pas les mémes et nécessitent donc
1’utilisation d'un facteur d’'échelle pour passer de 1’un des reperes a
1’autre.
Ce dernier point peut étre
c.t illustré en représentant dans un
tel diagramme un objet au repos
dans le repere (R) dans lequel sa
longueur est 1, alors qu'elle a
pour valeur 1’ dans 1le repere en
mouvement (R'").

c.t

Les deux lignes paralléles a l’axe
ct représentent les lignes
d’univers des extrémités de l’objet
au repos dans (R). Ces extrémités
ont donc, dans <ce repere, des
coordonnées constantes.

On a alors

X

Lo = X — X,

Quelle procédure de mesure doit-on mettre en place pour obtenir sa
longueur 1 dans le repere (R’) ? La réponse est simple : il faut mesurer
la position des deux extrémités au méme instant t’, mesuré dans le
repere (R’).

N’importe quelle 1ligne, parallele a 1’axe x' et représentant une
quantité t’ = constante, convient et va couper les deux lignes d’univers
des extrémités de 1’objet en deux points A et B du diagramme de
Minkowski. Ces deux événements ont pour coordonnées, dans le systeme
(x",t"), les couples (x',,t’') et (x'g,t') avec la méme valeur de t’ pour
chacun d’eux. La longueur de 1’objet mesurée dans (R’) a donc pour
valeur la quantité 1’ = (x's — x',).

Mesurées dans (R), 1les coordonnées sur 1l’'axe des x de ces deux
événements sont respectivement égale a x, et Xz, et sont indépendantes de
l'instant t déterminé dans (R). De ce fait, en appliquant 1la
transformation de Lorentz [symétrique de celle présentée en (1)]
exprimant x en fonction de x’ et t’, nous pouvons écrire®

Xp =y (X'pt+ Bet’)
Xg =y.(X'g+ Bct")

Par conséquent : Xg = Xp = y'(X'B_X'A )

5 I1 suffit de remplacer les grandeurs primées par celles qui ne le sont pas et de changer le signe
de B
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Finalement
I
O =1y4/(1-587)

On retrouve donc bien la contraction relativiste des longueurs.

Cependant, en regardant trop rapidement le diagramme dessiné sur la page
précédente, on peut étre induit en erreur car il y apparait que 17,
représentée par la distance (x's - x',), est plus grande que 1,,
représentée par (Xg — X,). Mais il faut se souvenir que, dans le
diagramme de Minkowski, les unités des axes correspondants n’ont pas la
méme longueur et qu’il faut donc leur appliquer un facteur d’'échelle .
Si on prend cela en compte, la mesure de 1’ est toujours plus petite que
celle de 1,.

3. Diagramme de Brehme ou Lorentz

Les inconvénients du diagramme précédent ont amené les scientifiques a
proposer d'autres types de représentation. Parmi celles-ci nous
retiendrons tout d’abord le diagramme proposé par Robert Brehme en 1968,
et qu’il proposa d’appeler diagramme de Lorentz.

Pour cela, nous pouvons réécrire les deux relations (1) différemment

X==X +,8.C.'[ a partir de la premiere équation de (1)

4

ct'==ct-pBX en combinant 1’équation précédente et 1la

4

seconde du groupe (1)

Sachant que (1/y)? + B> = 1 on peut poser B = sin(a) et (1/y) = cos(a) ce
qui nous donne pour les relations ci dessus :

X =cos(a).X+sin(a)ct
ct'=cos(a )ct—-sin(a)x'

Ces relations de transformation correspondent donc a une rotation
d’angle o® entre les systémes d’axes (x',ct) et (x,ct’). En prenant le
systeme (x',ct) avec ses deux axes perpendiculaires, il en sera de méme
du systeme (x,ct’). On obtient alors notre diagramme de Lorentz dans
lequel les deux référentiels (R) et (R’) sont représentés graphiquement
par le systeme de coordonnées (0,x,ct) et (0,x’,ct’), les deux origines
étant, comme dans le diagramme de Minkowski, confondus.

Pour obtenir les coordonnées d’un événement on peut projeter son point
représentatif soit perpendiculairement soit parallelement aux axes. Pour
le diagramme de Lorentz on le fait perpendiculairement. On a donc, au
final, la construction suivante : on trace tout d’abord deux lignes de
référence, 1’une horizontale et 1’autre verticale, qui vont nous

6 L’angle o du diagramme de Lorentz est différent, pour une méme vitesse V, de celui du diagramme de
Minkowski car, dans le premier cas, B = sin(a) alors que dans le second B = tan(a). Par exemple si
nous avons B = 0,99, o vaut pour le diagramme de Lorentz et pour celui de Minkowski.
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permettre de tracer les axes ct et ct’ symétriques par rapport a la
référence verticale et les axes x et x’' également symétriques par
rapport a la référence horizontale. Le résultat de ce tracé est alors

c.t' c.t

|
: c.t(E)
I
I

c.t'(E)

On constate bien, dans cette construction, la symétrie entre les deux
systemes de coordonnées : aucun n’'a une position privilégiée par rapport
a l'autre, ce qui respecte bien 1l’esprit de la relativité restreinte.
Comme pour le diagramme de Minkowski, la ligne d’'univers de la lumiéere
est une droite — en vert sur la figure — qui fait un angle de 45° avec
la ligne horizontale en pointillé.

Mettons en ®uvre ce diagramme pour démontrer 1l’invariance de
1’intervalle d’espace-temps As? tel que :

c.t' c.t

E4E,=d
gk - As? = c At? — Ax?

|
|
I
|
|
I
| X
|

|

|

e mm— o — —
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Géométriquement, nous pouvons écrire :
d? = (CAt' )>+(Ax)? = (CAt ) + (X' )?
donc (CAL)? —(Ax)? = (cAt' )2 — (X' )? =AS?

As? est bien un invariant puisque le choix de nos référentiel (R) et (R’)
est quelconque.

Utilisons le diagramme de Lorentz au cas de 1’étude de la désintégration
des muons atmosphériques.

Ligne d'univers d'un
point en altitude

T
Ligne d'univers AX
d'un point au sol

E, représente 1’événement associé a la création de cette particule et E,
celui attaché a sa désintégration au niveau du sol.

Considérons 1le muons au repos dans le repere (R) et 1le repéere (R’)
attaché au sol, dans lequel le point de 1’atmosphére ou est créé le muon
ainsi que le point au sol ou il se désintegre sont au repos.

Les deux événements E, et E, sont séparés par un intervalle d’espace-
temps dont les composantes, respectivement dans les reperes (R) et (R’),
sont (c.At,Ax) et (c.At’,Ax’). La valeur de At représente la durée de
vie propre du muon dans (R) puisqu’il se désintegre en arrivant au sol.
Dans 1le référentiel terrestre (R’) 1la quantité Ax’ représente la
distance parcourue par le muon et Ax est 1’épaisseur de 1’atmosphere,
mesurée dans (R) par un voyageur accompagnant le muon. Ax est donc, dans
le repere du muon, la distance, mesurée au méme instant, entre le point
de sa création et celui de sa désintégration.

La figure nous permet alors d’'écrire :

'—C—'At avec = - f3?
c.At _cos(a) cos(@)=+/(1-57)

Donc At’' > At
De méme nous avons

AX = AX.cos(a)
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Donc Ax' < Ax

Dans le repere terrestre la durée de vie d’un muon est donc augmentée
et, dans le repére du muon, 1’'épaisseur de 1’atmosphére est diminuée.

4. Diagramme de Loedel

I1 y a également celui imaginé par Enrique Loedel Palumbo en 1957. Ce
dernier ressemble au précédent et est construit de la méme facon mais la
projection sur les axes se fait parallelement a ces derniers et non pas
perpendiculairement. De ce fait il est nécessaire d’intervertir, par
rapport au diagramme de Lorentz, la position des systemes d’axes des
deux référentiels en mouvement relatif.

c.t | c.t'

x(E)

X

La figure «c¢i dessus montre comment obtenir 1les coordonnées d’un
événement dans chacun des deux systemes d’axes.

Utilisons ce type de diagramme pour démontrer la loi de composition des
vitesses en relativité restreinte. Supposons qu’un objet ait une vitesse
U’ par rapport a un référentiel (R’) qui est lui-méme en mouvement
rectiligne uniforme, avec la vitesse V, par rapport a un référentiel
inertiel (R), comme indiqué sur la figure ci-dessous.

tY 4y

0, 0' U X, X




Nous cherchons donc 1la vitesse U de 1la particule par rapport au
référentiel (R). En physique classique, il découle de la transformation
de Galilée que U = U’ + V. Ce résultat n’est plus valable dans le cadre
de la relativité restreinte. A 1’aide du diagramme de Loedel, cherchons
la nouvelle expression de V.

La ligne d’'univers d’une particule se déplacant a vitesse constante U
dans (R') est une droite dans un diagramme d’espace-temps. Sur cette
ligne d’'univers, prenons deux événements E, et E,, représentant 1la
position de 1'objet a deux instants différents.

c.t

/ Ligne d'univers
d'une p le

ayant la vitesse LJ

/E dans (R") T

1 X

Représentons maintenant sur ce diagramme les intervalles spatiaux Ax et
Ax' et les intervalles temporels At et At’ entre ces deux événements,
dans les référentiels (R) et (R').

c.t




Sur cette figure, nous voyons que le triangle rectangle E;H,A,
d’hypoténuse Ax, est semblable au triangle rectangle E,H,A, d’hypoténuse
c.At. Par conséquent, le rapport des hypoténuses de ces deux triangles
est égal au rapport de leur coté adjacente a 1'angle a. On peut donc
écrire :

AX+sin(cr)
Ax  MX'+cAt.sin(a) _ oA

CAt AX.sin(a)+cAt' AX

——.sin(a)+1
c.At
Le membre de gauche peut s’écrire :
Ax 1
_:_.U
CAt c
De méme nous avons :
A 1.,
——==U
CAt

De plus, nous savons que, pour le diagramme de Loedel, nous avons :

sin(a):%

La premiere équation s’écrit alors :

1‘ U'+\L
E.U = 1C. C = U =—U|JYV
¢ Suv+l 1+
C C

On retrouve bien ici la formule relativiste de composition des vitesses.

5. Question de cinématique traité avec un_diagramme
Les coordonnées x d'espace et t de temps de deux événements E, et E,,
mesurées dans un référentiel (R) sont (y = z = 0 dans les deux cas):

e Xy = Xy , T, = Xx¢/C (événement 1)

e X, = 2Xo, T, = Xo/2C (événement 2)

a) Il existe un référentiel (R’') ou les deux événements se produisent
en méme temps. Quelle est la vitesse de ce référentiel par rapport
a (R) ?

b) Quelle est la valeur du temps t’ pour laquelle les deux événements
ont lieu dans le nouveau référentiel (R’)?
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Pour dessiner le diagramme, la difficulté est de connaitre le sens du
mouvement relatif entre (R) et (R’) : y a t’il éloignement (V > 0) ou
rapprochement (V < 0) ?

Vérifions que (R’) existe en calculant le As? entre E;, et E, dans le
référentiel (R)

AS? = (CAt)? - Ax?
AS® =c®.(t, —1,)° (X, — X, )°

Remplacons t; et x; par leurs valeurs données dans le texte :

2
Xo X 3.X
AS* =C% (22 —-"0) —(2X, =X, ) =——"2- <0
2C C
L’intervalle d’espace - temps, qui est un invariant en relativité

restreinte, est donc négatif. Il est alors du genre espace. Dans ce cas
nous savons qu’'il existe un référentiel (R') dans lequel 1les deux
événements peuvent étre simultanés.

Voyons maintenant les deux cas correspondant au signe de V. Rappelons
auparavant que sur les diagrammes, les axes Oct et Oct’, ainsi que Ox et
Ox’', sont inversés lorsqu’on passe d’un rapprochement a un éloignement.
Les deux graphiques ci-dessous représentent ces deux situations. On
constate que, pour la premiere — c'est a dire V > 0 — il n’est pas
possible d’avoir E; et E, simultanés dans (R').

ct c.t Y e
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Raisonnons sur ce second diagramme. Si les deux événements E, et E, sont
simultanés dans (R’) ils appartiennent a une droite ct’ = constante qui
est perpendiculaire a 1l’axe t’'. De ce fait 1l’angle B est droit et
l’angle y = (AE,E,) vaut alors a.

Dans le triangle E,AE, on peut écrire :

AE, = Cty _ X
cos(a) cos(a)
De plus :
tan(a) = AE, _ Xo -1
E,E, 2Xx,.cos(a@) 2cos(a)
sin(a) _ 1

. 1
= sin(a)=— = a=30C
cos(a@) 2.cos(a) 2
Nous savons que sin(a) = V/c. Donc V = ¢/2 en module.
Comme nous avons un mouvement de rapprochement, nous avons V < 0 et nous
prendrons :

Pour la question b) nous voyons, sur le diagramme, que :
c.t’;, = c.t’, = CE,
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Or CE, = E;A + AC avec :

AB c.t, ,
E,A= = puisque )/ = & dansnotre cas
cos(y) cos(a)
X
comme C.t, = X E.A=—"0
1 0o => 1 cos(a)
Nous avons également :
sin(a
AC =0OC.tan(a )= x,.tan(a ) = x,.tan(a ) = X, .L
cos(a)

Donc :

Xo . sin(a’) _ X, N _ 3Xg - /3%,

1

ct',=CE,=E,+AC=—"0 +x,. = Xy .2
! o cos(@) “cos(@) 3 °W3 43

2 2

t,=t,=v3.22
C

On aurait, bien entendu, pu retrouver ces résultats en appliquant les
transformations de Lorentz. L’'intérét du diagramme, ici, est de
permettre de mieux comprendre ce qui est possible et ce qui ne l’est pas
en relativité restreinte comme, par exemple, 1la question de 1la
simultanéité des deux événements E, et E, qui, dans notre cas, n'est
possible que pour un sens de déplacement des référentiels (R) et (R')
1'un par rapport a l'autre.

6. Question d’'électromagnétisme traité avec un_diagramme

Abordons ici une question plus physique relative a la nouvelle approche
que nous avons en relativité restreinte du concept de champ magnétique.
Par exemple, dans 1’'expérience de la boucle conductrice et de 1’aimant,
il n’est plus nécessaire de faire appel a deux théories différentes :
celle de 1la force de Lorentz 1lorsque la boucle se déplace et que
1’aimant est « fixe » et celle de 1’apparition d’un champ électromoteur
décrit par une des équations de Maxwell — celle dite de Maxwell -
Faraday - lorsque la boucle est « fixe » et que 1’aimant se déplace.

Sans aborder des calculs assez longs, on peut montrer que l'’existence
d’un champ magnétique dans un référentiel dans 1lequel des charges
électriques sont en mouvement relatif découle naturellement des
équations de la relativité restreinte. On illustrera ensuite ceci a
1’aide d'un diagramme espace — temps.

Pour montrer comment la relativité restreinte introduit élégamment 1la

notion de champ magnétique nous allons vraisonner sur un modele
simpliste mais pertinent pour la question que nous traitons ici.
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Dans (R) @ Charge test en mouvement

_V., d Electrons en mouvement

CECROICIGICIOICICICED.
CICICICICIOCICIOIOIOIO

Ions au repos

Dans (R") @ Charge test au repos
Electrons au repos

d
GICICICICICICICICICIO.
CICICICIOCICICXOIOXOKO

gus———
Ions en mouvement

-V

Considérons un fil électrique en cuivre infiniment long parcouru par un
courant. Les ions Cu* restent fixes dans le repere (R) du laboratoire et
les électrons y sont en mouvement avec une vitesse V’. Que percoit alors
une charge électrique test de valeur q en mouvement avec la méme vitesse
V le long du fil et a une distance d de ce dernier ? Dans le repere (R)
Les densités 1linéiques de charges positives et négatives dans le fil
sont égales en valeur absolue et de signes contraires et valent % A,.
Cette distribution de charges va donc créer deux champs électriques de
sens contraire et de méme module® (E, = E. = 2kA,/d), au niveau de la
charge q. De ce fait la force électrique sur q est nulle. Si q était au
repos il n’y aurait rien de plus a écrire mais cette charge est en
mouvement et on sait qu’elle doit étre sensible a un champ magnétique.
Pour découvrir quelque chose a propos de la force magnétique exercée sur
g quand elle est observée dans (R), placons nous dans un référentiel
(R’) qui se déplace avec la vitesse V par rapport a (R), comme on peut
le voir sur la figure précédente. Dans (R’), la charge q est au repos,
les électrons également, et les ions positifs sont en mouvement avec la
vitesse -V. Du point de vue d'un observateur au repos dans (R’'), la
distance entre les électrons a augmenté et, de ce fait, la densité
linéique A. a diminué d’un facteur 1/y. On a alors la relation A. = Ay/y.
D'un autre co6té, la contraction relativiste de 1la distance entre les
ions positifs en mouvement entraine une augmentation de 1la densité
linéique A, d’'un facteur y. Sa nouvelle valeur est donnée par A, = V.A,,
ce qui entraine que, dans le référentiel (R'), les densités linéiques
des charges positives et négatives du fil ne sont plus égales et
opposées ! La <charge ¢q, au repos dans (R’), va donc ressentir
1’influence d’un champ électrique E’ tel que

La force appliquée, dans 1le référentiel (R’), sur 1la charge q est
alors

F'=q.E'= 2.k.ﬁ .(y—E )q
d y

7 Cette simplification peut étre considérée comme grossiére puisque, dans un conducteur, les
électrons de conduction ont des vitesses dont le module et la direction sont de toute sorte.
Cependant on peut dire que V est une vitesse de diffusion moyenne a 1’'équilibre et est associée au
courant dans le fil.

8 k est la constante 1/4me, de la loi de Coulomb.
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Sachant que F’ est soit attractive soit répulsive selon le signe de q et
qu’elle n'a qu’une composante F’/® qui est perpendiculaire a 1’axe du fil.
Revenons maintenant dans le repere habituel (R) pour déterminer la loi
de force magnétique subie par q en utilisant la transformation des
forces en dynamique relativiste dans (R).

= A 1
F =—Y=2k.2% (1-=
Comme :
1. V2
(1‘—2):?:52

Nous avons alors

= (2"“‘0 )= Eq

Rappelons que E est 1’amplitude du champ électrique, vu dans (R), soit
des charges positives soit des charges négatives contenues dans le fil.
Comme il n'y a pas de force électrique sur q dans (R), 1la force
déterminée ici représente uniquement la force magnétique. Sa valeur est
B? fois plus faible que la force électrique qu’exercerait seule soit une
distribution de charges positives soit de charges négatives. Elle est
perceptible, méme pour des valeurs faibles de B, car les forces
électriques des deux distributions d’'électrons et d’ions s’annulent
rigoureusement. Son existence est directement liée ici a la contraction
des longueurs en cinématique relativiste.

Cette situation peut étre interpréter tres simplement dans un diagramme
espace —temps. On choisira celui de Lorentz dans lequel on va pouvoir
montrer directement qu’il apparait une densité 1linéique de charges
globale différente de zéro dans le repere ou les électrons et la charge
g sont au repos et les ions en mouvement.

E'= 2k/1— avec A :Ao-(y_é)
d 14
£ =2k (y-1)
d 14

Les lignes d’univers des ions sont représentées par les lignes bleues
paralleles 1’axe Oct et celles des électrons par les lignes rouges

a
paralleles a l’axe Oct’ puisque, par simplification, on a choisi une

% 0On ne détaille pas ici ce point qui nous emménerait trop loin mais on peut le retrouver dans tous
les ouvrages sur la relativité restreinte.
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charge ayant 1la méme vitesse V que les électrons qui sont au repos dans
le repere (R’).

C-tl _\ | C-t Ions au repos dans (R)

\
\ | I"‘. "|| \

\J I\"\ I\ \ \

\ \ \ \ \
| \ \ \ \
| \ \. '\.\I
A/ WETE
| ‘\‘ \\\ \ ﬂ
Eie== Eﬁ | x \
o RaCT|
: Hzigx“ﬁf

Comme, en moyenne, le fil de cuivre est électriquement neutre, le nombre
de ligne d’univers des ions attachées a chaque élément du conducteur est
égal a celui des lignes d’'univers des électrons. Dans le repere (R) nous
avons o, = & et donc A, = A;, ceci restant vrai quelque soit 1l’'instant t
considéré.

Dans le référentiel (R’) la position des ions positifs et des électrons
négatifs a l’'instant t’ = 0 est donné par l’intersection de leurs lignes
d’univers avec l’axe Ox’'. On visualise immédiatement sur la figure que,
dans (R’'), la distance d'. entre les électrons est plus grande que d’';,
distance entre les ions. Ceci reste vrai pour n’importe quel instant t’.
De ce fait nous constatons que, dans (R’), la densité de charge des ions
est plus grande que celle des électrons. Ceci entraine qu’une charge q
extérieure au fil et au repos dans (R’) subit une force électrique.
Cette force, dans le repere (R), est percue comme un champ magnétique.

On peut montrer sans difficulté que le cas particulier que nous avons
considéré ici (la charge g a la méme vitesse V que les électrons dans le
fil) peut se généraliser a celui ou q a une vitesse U différente de V.

L’expression de F, devient simplement
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uv 2k
v =2 ( d°)q

F

7. Conclusion : avantages et inconvénients de la méthode

On peut discuter tout d'abord des outils mathématiques mis en cuvre dans
ces différentes méthodes. Pour celle du facteur k on manipule
exclusivement des expressions algébriques en s'aidant qualitativement de
diagrammes espace-temps simplifiés sur 1lesquels aucun calcul n'est
directement entrepris. L'algebre étant en général bien maitrisée par nos
éleves, ils n'ont pas de difficultés particulieres pour les comprendre,
hormis 1la 1logique des expériences de pensée utilisées qui nécessite
beaucoup d'attention.

La démarche décrite ici s'appuie sur une représentation géométrique de
la cinématique relativiste. Or, aujourd'hui, la géométrie n'est plus
familiere a nos éleves et, quelquefois, a nos collegues. Il n'est donc
pas toujours facile a ce public de raisonner sur ces diagrammes et d'en
saisir la mise en cuvre. On peut cependant contourner cette difficulté
en les utilisant uniquement d'une maniere graphique avec mesure d'angles
et de longueurs. Ceci ne présente pas de difficulté particuliere pour
les digrammes de Lorentz et de Loedel, celui de Minkowski étant de
manipulation plus délicate du fait de sa dissymétrie et de 1'inégalité
des longueurs représentant les unités des différents axes.

Ces diagrammes ont également un avantage sur la méthode algébrique
comme le montrent les quelques exercices traités au cours des pages
précédentes, ils permettent de représenter facilement une situation
particuliere et d'en déduire des résultats qualitatifs et quantitatifs.
Ceci est plus malaisé dans le cas de la méthode proposé par H. Bondi qui
l'avait développée essentiellement pour aider a mieux comprendre la
relativité restreinte.

Pierre MAGNIEN



