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ARTICLE DE FOND

Les lois de Kepler (2)

LA 1re LOI DE KEPLER EXPLIQUÉE 
PAR FEYNMAN
Pierre Causeret, Esbarres (21)

Richard Feynman (1918 – 1988), prix Nobel 1965, était connu pour sa faculté à rendre simple et accessible des 
problèmes compliqués. Il reste célèbre pour avoir trouvé une représentation schématique visuelle des interactions des 

particules en théorie quantiques des champs. Ici il s’agit d’établir d’une manière différente la première loi de Kepler. 

Les orbites des planètes sont des ellipses C’est la 
première loi de Kepler, la plus connue des trois. Pour 

la trouver, Kepler a utilisé les observations précises de la 
planète Mars réalisées par Tycho Brahe. Ce n’est donc 
au départ qu’une loi empirique obtenue par l’observation. 
Est arrivé ensuite Newton et sa loi de la gravitation pour 
comprendre pourquoi les trajectoires des planètes et des 
comètes sont toujours des coniques – ellipse, parabole ou 
hyperbole – à condition de supposer que le Soleil est le 
seul corps attracteur. Mais comment passer de la loi de la 
gravitation en 1/R² à une conique ? Une des solutions est 
de le démontrer par l’algèbre, ce qui n’est pas évident1.
Le célèbre physicien Richard Feynman a proposé dans 
l’un de ses cours une méthode géométrique originale. 
À partir d’un enregistrement et de notes retrouvées 
de Feynman, ce cours a été publié par David et Judith 
Goodstein et traduit en français2. 
Dans ce cours, Feynman commence par démontrer la 
loi des aires. Cette loi provient uniquement du principe 
d’inertie et du fait que la force d’attraction du Soleil est 
centripète. Il démontre ensuite que la 3e loi de Kepler 
induit une force en 1/R² (R est la distance Soleil-
planète).  Ces deux démonstrations sont disponibles sur 
le site du CLEA3.
Il continue en démontrant que les orbites sont des ellipses, 
ou du moins peuvent être des ellipses. Pour cela, il utilise 
la loi des aires et la force en 1/R². La démonstration 
est subtile et un peu longue. C’est une démonstration 
qui manque parfois de rigueur, en particulier pour les 
passages à la limite, mais elle a le mérite de faire appel à 
des notions mathématiques simples. En voici le principe. 

Propriétés des ellipses 

Définition
On définit géométriquement une ellipse ainsi : un point M 
appartient à une ellipse si la somme des distances de M 
aux foyers est constante. 

1   On pourra regarder par exemple sur Wikipedia l’article « Démonstra-
tion des lois de Kepler ». 
2   Le Mouvement des planètes autour du Soleil (Diderot Éditeur, Arts et 
sciences, 1997).
3   Sur clea-astro.eu, cliquer sur productions récentes, puis sur 179 (il 
faudra vous identifier).

Ce qui s’écrit MF + MG = k si F et G sont les deux foyers. 
C’est cette méthode qui permet de tracer une ellipse avec 
une ficelle.
Remarque : k est le grand axe AB de l’ellipse.

En effet, comme le point A appartient à l’ellipse, on a 
AF + AG = k. Or, AF  +  AG =  AF  +  AF  +  FG 
et  AF + AF + FG = AF + BG + FG = AB.  d’où k = AB.

Propriété
Un point P est à l’intérieur de l’ellipse (E) 
si PF + PG < k (figure 3).

Cette propriété se démontre facilement ainsi :
PF + PG < MF + MG car PG < PM + MG . 

Fig.1. Définition d’une ellipse de foyers F et G.

Fig.2. Tracé d’une ellipse avec la méthode du jardinier (dessin de 
Georges Paturel extrait du n° 118 des CC).

Fig.3. Point intérieur à l’ellipse.
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De même, un point P est à l’extérieur de l’ellipse (E) si 
PF + PG > k

Construction d’une ellipse point par point avec ses 
tangentes

Soient deux points F et G et une longueur k définissant 
une ellipse (E) de foyers F et G et de grand axe k. On peut 
tracer cette ellipse point par point ainsi :
•	 On trace le cercle (C) de centre G et de rayon k.
•	 P est un point quelconque de (C). La médiatrice (d) de 

[PF] coupe [PG] en un point M. 
•	 On peut montrer que M est un point de l’ellipse et que 

(d) est tangente à (E) en M (voir encadré).

Démonstration
* MF + MG = MP+MG = PG = k donc M ∈ (E). Et on 
peut vérifier que tout point de (E) peut se construire 
ainsi.
* Pour démontrer que (d) est tangente à l’ellipse, il suffit 
de démontrer qu’aucun de ses points n’est à l’intérieur 
de l’ellipse. Pour tout point D de (d) :
DF + DG = DP + DG ≥ PG donc DF + DG ≥ k, le point 
D est à l’extérieur de l’ellipse.

Remarque : on peut montrer que l’intersection de (d) avec 
(GP) se trouve bien entre G et P.
M ne peut pas être au-delà de G car PM = FM <k.

Les orbites des planètes 
sont des ellipses
Découpe de l’ellipse
On découpe la trajectoire en choisissant des angles « au 
centre » (ou plutôt au foyer) égaux. Sur la figure 5, les 
angles tracés à partir du Soleil mesurent tous 10°. Les 
aires des secteurs ne sont donc pas égales et les arcs 
d’orbite ne sont pas parcourus dans le même temps. Cette 
astuce de Feynman va servir à déterminer le diagramme 
des vitesses.

Calculs d’aires
Feynman commence par montrer que les aires des 
différents secteurs sont proportionnelles à R² où R est la 
distance du Soleil au point de l’ellipse.

L’aire du triangle de la figure 6 vaut R1×R2 ×sinθ /2.
Pour θ assez petit, R1 ≈ R2 et l’aire du triangle peut s’écrire 
R² sinθ / 2 avec θ constant. Ce qui est bien proportionnel 
à R².

On utilise maintenant la loi des aires  : les aires sont 
proportionnelles au temps de parcours.
Comme on vient de montrer qu’elles étaient également 
proportionnelles à R², on en déduit que les ∆t (temps pour 
parcourir un arc d’ellipse) sont aussi proportionnels à R².  
Or la force d’attraction F est proportionnelle à 1/R².
Donc F×∆t est constant.
On sait depuis Newton que la force est proportionnelle à 
l’accélération.
Si F est proportionnelle à DV /Dt  (qui représente 
l’accélération) et que F×∆t est constant, cela signifie que 
DV est constant (en intensité, pas en direction).

On peut dire que la planète subit des changements de 
vitesse égaux dans des angles égaux.

Tracé du diagramme des vitesses 
Feynman utilise maintenant un diagramme des vitesses 
(appelé aussi hodographe). Pour cela, il trace à partir d’un 
même point une série de vecteurs vitesses.
Sur ce type de diagramme, deux vecteurs vitesses V1  et 
V2   sont représentés à partir du même point O, ici par 
OA1 et OA2  (figure 7). 

On a : OA1  + A1A2  = OA2  

Fig.4. Tracé d’une ellipse point par point.

Fig.5. Découpe d’une orbite « à la Feynman ». Les angles dont le 
sommet est le Soleil sont égaux 

(on a pris 10° chacun sur la figure).

Fig.6. Chaque secteur d’ellipse est assimilé à un triangle.
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donc A1A2   = OA2  – OA1  = V2  – V1 . 

A1A2  est donc la variation de vitesse, ou DV  entre les 
positions 1 et 2.

Nous allons tracer les vitesses OA1, OA2, OA3, OA4... à 
partir d’un point O sachant que :
1. Les DV  sont constants donc A1A2 = A2A3 = ...
2. La force d’attraction étant exercée par le Soleil, les  
DV doivent être dirigés vers le Soleil ; dans la découpe 
« à la Feynman », ils se décalent donc à chaque fois du 
même angle (10° sur la figure 7) et les angles. A1A2A3} , 
A2A3A4} , A3A4A5} ... sont tous égaux (170° sur la figure 8).

Conclusion : les points A1, A2, A3, A4... sont situés sur un 
polygone régulier à n côtés.

Conclusion  : A1A2A3A4... est un polygone régulier (le 
point O, l’origine des vitesses n’a aucune raison d’en être 
le centre). 

En passant à la limite, le diagramme des vitesses est un 
cercle.

Reconstitution de l’orbite 
Connaissant le diagramme des vitesses, un polygone 
régulier qu’on assimile à un cercle, on peut reconstituer 
la trajectoire de la planète. Pour cela, on fixe tout d’abord 
l’origine des vitesses (le point O) à l’intérieur du cercle. 
Nous étudierons le cas où O est situé à l’extérieur du 
cercle plus loin. 

On sait que la vitesse est maximale au périhélie (loi des 
aires), on peut donc placer cette vitesse V1  ( sur la figure 
10) sur le diagramme : c’est OA1  où [OA1] passe par le 
centre C du cercle ou du polygone régulier (figure 10). 

On a partagé l’orbite en n angles «  au foyer  » égaux. 
L’angle θ sur la figure 10 vaut donc 360°/n.
A1A2A3A4... est un polygone régulier à n côtés donc 
l’angle  (figure 10b) vaut aussi 360°/n, il est donc égal à θ.

Pour comparer les deux figures, nous faisons effectuer 
une rotation de 90° à la figure 10 (fig.11). 

Fig.7. Principe de construction du diagramme des 
vitesses.

Fig.8. Le diagramme des vitesses pour une orbite découpée « à la 
Feynman » (avec des angles « au foyer » égaux).

Fig.9. Diagramme des vitesses d’une planète.

Fig.10. Position du périhélie sur le diagramme des vitesses.

Fig.11. Diagramme des vitesses et orbite après 
une rotation de 90°. 
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Le point P est un point quelconque du cercle du diagramme 
des vitesses et nous remplaçons l’angle élémentaire θ par 
un angle quelconque α.

Les côtés des deux angles notés α sont maintenant 
parallèles (sur le tracé de l’orbite et sur le diagramme des 
vitesses). La vitesse V  représentée à droite, tangente à 
l’orbite, est maintenant perpendiculaire à (OP).
Pour tout angle α, on connaît la vitesse et donc la direction 
de la tangente à la courbe. Comment, à partir de ces 
données, reconstituer l’orbite ? 

Nous allons tracer une orbite possible sur le diagramme 
des vitesses (à l’échelle près). 
Pour cela, nous reprenons la construction géométrique de 
l’ellipse avec ses tangentes :
On trace la médiatrice de [OP] qui coupe [CP] en un 
point M. On a montré précédemment qu’avec cette 
construction, le point M appartient à une ellipse dont 
C et O sont les foyers (le Soleil est en C ici)  : en effet, 
CM + MO = CM + MP = CP = constante. De plus, la 
médiatrice est tangente à l’ellipse. 

Le point M remplit donc la condition posée : pour un angle 
α donné, la tangente en M à la courbe est perpendiculaire 
à [OP] et l’angle périhélie – Soleil – planète est égal à α.

Feynman conclut ainsi : « Par conséquent, la solution au 
problème est une ellipse – ou plutôt, c’est l’inverse que 
j’ai démontré : l’ellipse est une solution au problème » ; 
Il laisse ensuite le soin aux étudiants d’étudier le cas où 
le point O est sur le cercle des vitesses puis à l’extérieur 
du cercle.

Complément
Prenons déjà le cas où le point O, origine des vitesses 
est à l’extérieur du cercle.  La construction avec la 
médiatrice de [OP] est la même que précédemment. Seule 
différence : la médiatrice (d) coupe la droite (PC) en un 
point extérieur au segment [PC].  

On peut écrire :
MO – MC = MP – MC = PC = rayon = constante
C’est la définition bifocale d’une hyperbole !

La situation intermédiaire entre l’ellipse et l’hyperbole 
devrait s’obtenir en plaçant le point O ni à l’intérieur ni à 
l’extérieur mais sur le cercle.
Manque de chance, si O appartient au cercle, la médiatrice 
de [PO] coupe [PC] toujours au même point, en C. On 
n’obtient donc pas ainsi le cas limite de la parabole. Mais 
un de nos relecteurs nous a proposé une solution.

n

Origine de la démonstration

Feynman attribue le fait que le diagramme des vitesses soit un 
cercle à certain M. Fano. Le même principe de démonstration 
apparaissait déjà dans un livre de James Clerk Maxwell en 
1877 et Maxwell attribue la méthode à Sir William Hamilton.

(D’après les commentaires de David & Judith Goodsteil dans 
Le mouvement des planètes autour du Soleil).

Fig.12. Construction de l’orbite.

Fig.13. En prenant O extérieur au cercle, on obtient 
une hyperbole.
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Solution proposée par Béatrice Sandré

Dans l’article précédent, nous avons trouvé ellipse et hyperbole comme trajectoires possibles à partir d’un hodographe 
circulaire, en prenant le point O, origine des vitesses, à l’intérieur puis à l’extérieur du cercle. Que se passe-t-il si le 
point O est sur le cercle ? Voici une solution que nous a envoyée Béatrice Sandré.

Hodographe d’origine O : cercle de centre C passant par O.
La droite ∆ est tangente à ce cercle en O’ diamétralement 
opposé à O.
Soit H un point quelconque de Δ. On construit la médiatrice 
(d) de CH et le point M de cette médiatrice tel que MH soit 
perpendiculaire à Δ. Par construction, M appartient à la 
parabole de foyer C et de directrice Δ. De plus, la tangente 
à la parabole en M est la droite (d) bissectrice de l’angle 
CMH (propriétés des paraboles).
Soit P l’intersection de CM et du cercle hodographe. 
D’après la figure ci-dessus, PO’ est parallèle à (d) et OP 
est perpendiculaire à (d).
Le point M remplit donc la condition posée  : pour un 
angle O’CM = α donné, la tangente en M à la courbe est 
perpendiculaire à OP.
J’ai donc démontré que la parabole est une solution 
au problème lorsque le point O se trouve sur le cercle 
hodographe.

n

Mots croisés képlériens
Horizontalement
1. C’est Kepler qui, le premier, utilisa ce mot dans le système jovien. 
2. Ancien. Histoire de mailles. 
3. À nouveau vérifié. Constante pour Kepler si l’intervalle de temps ne 
change pas. 
4. Poèmes. Un (en abrégé) pour la Terre en un an. 
5. Orbite pour Kepler. 
6. Comme l’Astronomia de Kepler. La Seine la reçoit et la traverse. 
7. Plats. 
8. Un. Les rudolphines sont dues à Kepler. 
9. Le Somnium de Kepler s’y passe. 
10. La mère de Kepler a dû en entendre plus d’un sur son compte. 
Présent. 
11. La supernova de Kepler en fut un en 1604.

Verticalement
1. Kepler y a vu une supernova en 1604, dans son pied.
2. Petit ou grand dans une orbite képlérienne. Trois pour Kepler. Pas AR.
3. La Terre dans le Somnium de Kepler. Celui de Kepler : 58 ans à sa mort.
4. S’il l’est en astronomie, il devra s’intéresser à Kepler. Pronom. 
5. Élément ou parti. Initiales de l’astronome qui a donné son nom à la sonde qui étudie actuellement le Soleil au plus 
près. Celle de Kepler était fragile.
6. Se fait avec des billets. Cru.
7. C’est bien là. Père fondateur des mathématiques.
8. Ce qu’ont toujours les absents. Boris Johnson est passé par là. 
9. Les amas ouverts ne le sont pas, les amas globulaires le sont peut-être. mg ?

Solution p. 48


