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ARTICLE DE FOND

LA 1 LOI DE KEPLER EXPLIQUEE
PAR FEYNMAN

Pierre Causeret, Esbarres (21)

Richard Feynman (1918 — 1988), prix Nobel 1965, était connu pour sa faculté a rendre simple et accessible des
problemes compliqués. Il reste célebre pour avoir trouvé une représentation schématique visuelle des interactions des
particules en théorie quantiques des champs. Ici il s’agit d’établir d’'une maniere différente la premiere loi de Kepler.

Les orbites des planctes sont des ellipses C’est la
premiére loi de Kepler, la plus connue des trois. Pour
la trouver, Kepler a utilisé les observations précises de la
planéte Mars réalisées par Tycho Brahe. Ce n’est donc
au départ qu’une loi empirique obtenue par 1’observation.
Est arrivé ensuite Newton et sa loi de la gravitation pour
comprendre pourquoi les trajectoires des planetes et des
cometes sont toujours des coniques — ellipse, parabole ou
hyperbole — a condition de supposer que le Soleil est le
seul corps attracteur. Mais comment passer de la loi de la
gravitation en 1/R? a une conique ? Une des solutions est
de le démontrer par 1’algebre, ce qui n’est pas évident'.
Le célebre physicien Richard Feynman a proposé dans
I’un de ses cours une méthode géométrique originale.
A partir d’un enregistrement et de notes retrouvées
de Feynman, ce cours a été publié par David et Judith
Goodstein et traduit en francais’.

Dans ce cours, Feynman commence par démontrer la
loi des aires. Cette loi provient uniquement du principe
d’inertie et du fait que la force d’attraction du Soleil est
centripete. Il démontre ensuite que la 3° loi de Kepler
induit une force en 1/R*> (R est la distance Soleil-
planéte). Ces deux démonstrations sont disponibles sur
le site du CLEA®.

Il continue en démontrant que les orbites sont des ellipses,
ou du moins peuvent étre des ellipses. Pour cela, il utilise
la loi des aires et la force en 1/R% La démonstration
est subtile et un peu longue. C’est une démonstration
qui manque parfois de rigueur, en particulier pour les
passages a la limite, mais elle a le mérite de faire appel a
des notions mathématiques simples. En voici le principe.

Propriétés des ellipses

Définition

On définit géométriquement une ellipse ainsi : un point M
appartient a une ellipse si la somme des distances de M
aux foyers est constante.

1 On pourra regarder par exemple sur Wikipedia I'article « DEmonstra-
tion des lois de Kepler ».

2  Le Mouvement des planétes autour du Soleil (Diderot Editeur, Arts et
sciences, 1997).

3 Sur clea-astro.eu, cliquer sur productions récentes, puis sur 179 (il
faudra vous identifier).
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Fig.1. Définition d’une ellipse de foyers F et G.

Ce qui s’écrit MF + MG =k si F et G sont les deux foyers.
C’est cette méthode qui permet de tracer une ellipse avec
une ficelle.

Remarque : k est le grand axe AB de ’ellipse.

Fig.2. Tracé d’une ellipse avec la méthode du jardinier (dessin de

Georges Paturel extrait du n® 118 des CC).

En effet, comme le point A appartient a I’ellipse, on a
AF + AG = k. Or, AF + AG = AF + AF + FG
et AF+AF +FG=AF + BG+ FG=AB. d’ou k=AB.

Propriété
Un point P est a 'intérieur de ’ellipse (E)
si PF + PG <k (figure 3).

Cette propriété se démontre facilement ainsi :
PF + PG < MF + MG car PG <PM + MG .
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Fig.3. Point intérieur a I'ellipse.
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De méme, un point P est a I’extérieur de I’ellipse (E) si
PF + PG>k

Construction d’une ellipse point par point avec ses
tangentes

Soient deux points F et G et une longueur k définissant

une ellipse (E) de foyers F et G et de grand axe k. On peut

tracer cette ellipse point par point ainsi :

* On trace le cercle (C) de centre G et de rayon k.

* P est un point quelconque de (C). La médiatrice (d) de
[PF] coupe [PG] en un point M.

* On peut montrer que M est un point de 1’ellipse et que
(d) est tangente a (E) en M (voir encadré).

Fig.4. Tracé d’une ellipse point par point.

Démonstration
* MF + MG = MP+MG = PG =k donc M € (E). Et on
peut vérifier que tout point de (E) peut se construire
ainsi.
* Pour démontrer que (d) est tangente a I’ellipse, il suffit
de démontrer qu’aucun de ses points n’est a I’intérieur
de I’ellipse. Pour tout point D de (d) :
DF + DG = DP + DG > PG donc DF + DG >k, le point
D est a ’extérieur de I’ellipse.

Remarque : on peut montrer que 1’intersection de (d) avec
(GP) se trouve bien entre G et P.
M ne peut pas étre au-dela de G car PM = FM <k.

Les orbites des planétes
sont des ellipses

Découpe de ’ellipse

On découpe la trajectoire en choisissant des angles « au
centre » (ou plutot au foyer) égaux. Sur la figure 5, les
angles tracés a partir du Soleil mesurent tous 10°. Les
aires des secteurs ne sont donc pas ¢égales et les arcs
d’orbite ne sont pas parcourus dans le méme temps. Cette
astuce de Feynman va servir a déterminer le diagramme
des vitesses.

Les lois de Kepler (2)

Fig.5. Découpe d’une orbite « a la Feynman ». Les angles dont le

sommet est le Soleil sont égaux
(on a pris 10° chacun sur la figure).

Calculs d’aires

Feynman commence par montrer que les aires des
différents secteurs sont proportionnelles a R? ou R est la
distance du Soleil au point de ’ellipse.
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Fig.6. Chaque secteur d’ellipse est assimilé a un triangle.

L’aire du triangle de la figure 6 vaut R xR, xsinf /2.
Pour 0 assez petit, R, =R, et ’aire du triangle peut s’écrire
R? sinB / 2 avec O constant. Ce qui est bien proportionnel
aR2

On utilise maintenant la loi des aires : les aires sont
proportionnelles au temps de parcours.

Comme on vient de montrer qu’elles étaient également
proportionnelles a R?, on en déduit que les At (temps pour
parcourir un arc d’ellipse) sont aussi proportionnels a R2.
Or la force d’attraction F est proportionnelle a 1/R2.
Donc FxAt est constant.

On sait depuis Newton que la force est proportionnelle a
I’accélération.

Si F est proportionnelle a | AV | /At (qui représente
I’accélération) et que FxAt est constant, cela signifie que
| AV [lest constant (en intensité, pas en direction).

On peut dire que la planéte subit des changements de
vitesse €gaux dans des angles égaux.

Tracé du diagramme des vitesses

Feynman utilise maintenant un diagramme des vitesses
(appelé aussi hodographe). Pour cela, il trace a partir d’un
méme point une série de vecteurs vitesses.

Sur ce type de diagramme, deux vecteurs vitesses Vi et
V. sont représentés a partir du méme point O, ici par
OAT et OA, (figure 7).

Ona: OA; + A/A; = OA,
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donc AlA; = OA;, — OA, = VQ - VT

A, A, est donc la variation de vitesse, ou AV entre les
positions 1 et 2.
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Fig.7. Principe de construction du diagramme des

vitesses.

Nous allons tracer les vitesses OA |, OA,, OA,, OA,... a
partir d’un point O sachant que :

1. Les | AV | sont constants donc A A, = A A, = ...

2. La force d’attraction étant exercée par le Soleil, les
AV doivent étre dirigés vers le Soleil ; dans la découpe
« a la Feynman », ils se décalent donc a chaque fois du
méme angle (10° sur la figure 7) et les angles. m,
m, A A ... sont tous ¢gaux (170° sur la figure 8).

Conclusion : les points A , A, A, A,... sont situés sur un
polygone régulier a n cotés.

Fig.8. Le diagramme des vitesses pour une orbite découpée « a la
Feynman » (avec des angles « au foyer » égaux).

Conclusion : A A A A,... est un polygone régulier (le
point O, I’origine des vitesses n’a aucune raison d’en étre
le centre).

Fig.9. Diagramme des vitesses d’une planéte.
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En passant a la limite, le diagramme des vitesses est un
cercle.

Reconstitution de I’orbite

Connaissant le diagramme des vitesses, un polygone
régulier qu’on assimile a un cercle, on peut reconstituer
la trajectoire de la planéte. Pour cela, on fixe tout d’abord
I’origine des vitesses (le point O) a I’intérieur du cercle.
Nous étudierons le cas ou O est situ¢ a I’extérieur du
cercle plus loin.

On sait que la vitesse est maximale au périhélie (loi des
aires), on peut donc placer cette vitesse V; ( sur la figure
10) sur le diagramme : c’est OA; ou [OA,] passe par le
centre C du cercle ou du polygone régulier (figure 10).
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Fig.10. Position du périhélie sur le diagramme des vitesses.

On a partagé D’orbite en n angles « au foyer » égaux.
L’angle 0 sur la figure 10 vaut donc 360°/n.
A AAA,.. est un polygone régulier a n cotés donc

I’angle (figure 10b) vaut aussi 360°/n, il est donc égal a 6.

Pour comparer les deux figures, nous faisons effectuer
une rotation de 90° a la figure 10 (fig.11).

A

b. Orbite aprés
a. Diagramme des vitesses rotation de 90®

Fig.11. Diagramme des vitesses et orbite aprés
une rotation de 90°.
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Le point P est un point quelconque du cercle du diagramme
des vitesses et nous remplacons 1’angle élémentaire 6 par
un angle quelconque a.

Les cotés des deux angles notés o sont maintenant
paralléles (sur le tracé de I’orbite et sur le diagramme des
vitesses). La vitesse V représentée a droite, tangente a
I’orbite, est maintenant perpendiculaire a (OP).

Pour tout angle o, on connait la vitesse et donc la direction
de la tangente a la courbe. Comment, & partir de ces
données, reconstituer 1’orbite ?

Nous allons tracer une orbite possible sur le diagramme
des vitesses (a I’échelle pres).

Pour cela, nous reprenons la construction géométrique de
I’ellipse avec ses tangentes :

On trace la médiatrice de [OP] qui coupe [CP] en un
point M. On a montré précédemment qu’avec cette
construction, le point M appartient a une ellipse dont
C et O sont les foyers (le Soleil est en C ici) : en effet,
CM + MO = CM + MP = CP = constante. De plus, la
médiatrice est tangente a I’ellipse.
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Fig.12. Construction de I'orbite.

Le point M remplit donc la condition posée : pour un angle
o donné, la tangente en M a la courbe est perpendiculaire
a [OP] et I’angle périhélie — Soleil — planéte est égal a a.

Feynman conclut ainsi : « Par conséquent, la solution au
probléme est une ellipse — ou plutot, c’est ’inverse que
j’ai démontré : I’ellipse est une solution au probléme » ;
Il laisse ensuite le soin aux étudiants d’étudier le cas ou
le point O est sur le cercle des vitesses puis a 1’extérieur
du cercle.
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Complément

Prenons déja le cas ou le point O, origine des vitesses
est a D'extérieur du cercle. La construction avec la
médiatrice de [OP] est la méme que précédemment. Seule
différence : la médiatrice (d) coupe la droite (PC) en un
point extérieur au segment [PC].

A

Fig.13. En prenant O extérieur au cercle, on obtient
une hyperbole.

On peut écrire :
MO —MC = MP — MC = PC = rayon = constante
C’est la définition bifocale d’une hyperbole !

La situation intermédiaire entre ’ellipse et 1’hyperbole
devrait s’obtenir en plagant le point O ni a I’intérieur ni a
I’extérieur mais sur le cercle.

Manque de chance, si O appartient au cercle, la médiatrice
de [PO] coupe [PC] toujours au méme point, en C. On
n’obtient donc pas ainsi le cas limite de la parabole. Mais
un de nos relecteurs nous a proposé une solution.

Origine de la démonstration

Feynman attribue le fait que le diagramme des vitesses soit un
cercle a certain M. Fano. Le méme principe de démonstration
apparaissait déja dans un livre de James Clerk Maxwell en
1877 et Maxwell attribue la méthode a Sir William Hamilton.

(D’apres les commentaires de David & Judith Goodsteil dans
Le mouvement des planétes autour du Soleil).
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Solution proposée par Béatrice Sandré

Dans I’article précédent, nous avons trouvé ellipse et hyperbole comme trajectoires possibles a partir d’un hodographe
circulaire, en prenant le point O, origine des vitesses, a I’intérieur puis a ’extérieur du cercle. Que se passe-t-il si le
point O est sur le cercle ? Voici une solution que nous a envoyée Béatrice Sandré.

Hodographe d’origine O : cercle de centre C passant par O.
La droite A est tangente a ce cercle en O’ diamétralement
oppos¢ a O.

Soit H un point quelconque de A. On construit la médiatrice
(d) de CH et le point M de cette médiatrice tel que MH soit
perpendiculaire a A. Par construction, M appartient a la
parabole de foyer C et de directrice A. De plus, la tangente
a la parabole en M est la droite (d) bissectrice de I’angle
CMH (propriétés des paraboles).

Soit P I’intersection de CM et du cercle hodographe.
D’aprés la figure ci-dessus, PO’ est parallele a (d) et OP
est perpendiculaire a (d).

Le point M remplit donc la condition posée : pour un
angle O’CM = a donné, la tangente en M a la courbe est
perpendiculaire a OP.

J’ai donc démontré que la parabole est une solution

au probléme lorsque le point O se trouve sur le cercle

hodographe.

1 23 456 7 8 9 Mots croisés képlériens

Horizontalement

. 1. C’est Kepler qui, le premier, utilisa ce mot dans le systéme jovien.
2. Ancien. Histoire de mailles.

3. A nouveau vérifié. Constante pour Kepler si I’intervalle de temps ne
change pas.

4. Poemes. Un (en abrégé) pour la Terre en un an.

5. Orbite pour Kepler.

. 6. Comme 1’4stronomia de Kepler. La Seine la recoit et la traverse.

B Y

. . 7. Plats.
8. Un. Les rudolphines sont dues a Kepler.
. 9. Le Somnium de Kepler s’y passe.
. . . 10. La mere de Kepler a dii en entendre plus d’un sur son compte.
Présent.
10 ! 11. La supernova de Kepler en fut un en 1604.
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Verticalement

1. Kepler y a vu une supernova en 1604, dans son pied.

2. Petit ou grand dans une orbite képlérienne. Trois pour Kepler. Pas AR.

3. La Terre dans le Somnium de Kepler. Celui de Kepler : 58 ans a sa mort.

4. S’il I’est en astronomie, il devra s’intéresser a Kepler. Pronom.

5. Elément ou parti. Initiales de I’astronome qui a donné son nom a la sonde qui étudie actuellement le Soleil au plus
pres. Celle de Kepler était fragile.

6. Se fait avec des billets. Cru.

7. C’est bien la. Pere fondateur des mathématiques.

8. Ce qu’ont toujours les absents. Boris Johnson est passé par la.

9. Les amas ouverts ne le sont pas, les amas globulaires le sont peut-étre. mg ?

Solution p. 48

Les lois de Kepler (2)
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