26

ARTICLE DE FOND

INTRODUCTION A L'EQUATION
DE KEPLER

Daniel Descout, Deuil-la-Barre

Comment savoir ou se trouve une planéte sur son orbite a un instant donné ? Le probléeme n’est pas simple, il faut
pour cela résoudre une équation établie par Kepler pour les orbites elliptiques. Apres avoir présenté cette équation a
partir de la longueur des saisons, quelques méthodes de résolution sont proposées.

Photographiée en 1990 par la sonde Voyager-I située au-
dela de I’orbite de Neptune, la Terre apparait, selon le mot
de Carl Sagan, comme « un grain de poussicre suspendu
dans un rayon de soleil » (figure 1). Habitants de ce « point
bleu pale », nous essayons, depuis des générations, de
comprendre les détails de la course apparente du Soleil
devant les autres étoiles.

ohannes Kepler, au début du XVII° si¢cle, a fait un pas

de géant en proposant ses trois lois, qui précisent le
mouvement des planétes dans un modele héliocentrique.
C’est le dossier de ce numéro des Cahiers Clairaut.
Il a aussi proposé une €quation éponyme qui permet de
répondre a deux problématiques. D’une part, connaissant
DPorbite d’une planéte autour du Soleil, et la position de
la planéte a une date donnée, en déduire sa position
a une date quelconque. D’autre part, avec les mémes
prémisses, et réciproquement, en déduire la date du
passage de la planéte a une position quelconque de son
orbite.
Apres une introduction de 1’équation de Kepler a partir
de la comparaison des durées des saisons terrestres, nous
aborderons quelques méthodes de résolution de cette
équation. Les applications astronomiques de 1’équation
de Kepler feront I’objet d’un article distinct dans un
prochain numéro.

De l'inégalité des durées des saisons astro-
nomiques

La détermination des saisons est le résultat des
observations astronomiques de la position du Soleil sur la
votte céleste vue depuis la Terre. La course du centre du
Soleil définit I’écliptique. Les intersections de I’écliptique
avec I’équateur céleste définissent les deux équinoxes.
Les deux solstices correspondent aux instants de 1’année
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pour lesquels la déclinaison du Soleil est stationnaire.
Ces définitions étant données, il suffit de connaitre
la longitude écliptique du Soleil pour déterminer les
quatre événements fixant le début de chaque saison
astronomique : longitudes zéro et 180 degrés (ou =
radians) pour les équinoxes de printemps et d’automne,
90 degrés (ou m/2 radian) et 270 degrés (ou 37/2 radians)
pour les solstices d’été et d’hiver. Ensuite, le passage d’un
référentiel géocentrique a un référentiel héliocentrique
permet de situer ces quatre événements comme les
passages a quatre positions remarquables de la Terre sur
son orbite autour du Soleil (événements représentés sur
la figure 2).

plan de 'écliptique

An 2022

reférentiel héliocentrigue

Les durées des saisons astronomiques de I’année 2022 sont
issues des données du calculateur de 'TMCCE! (notation
décimale en jours, notés j) :

Hiver 2022 (entre S, et E)) : 88,982 j (durée notée T,
ensuite) ;

Printemps 2022 (entre E, et S)) : 92,736 j (durée notée
Tp ensuite) ;

Et¢ 2022 (entre S, et E,) : 93,660 j (durée notee T,
ensuite) ;

Automne 2022 (entre E, et S)) : 89,864 j (durée notee T,
ensuite).

1 https://promenade.imcce.fr/fr/pages4/439.html
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L’arrondi au milliéme de jour correspond a une
approximation de I'ordre de la minute.

Les durées des saisons sont inégales, variant de 89 jours
pour la plus courte (I’hiver) a plus de 93 jours pour la plus
longue, 1’été. Ces différences sont dues a la variabilité de
la vitesse orbitale de la Terre autour du Soleil, associée
a la variabilité de la distance Terre - Soleil (modélisée
par Johannes Kepler, et exprimée dans ses deux premicres
lois ; 1609, Astronomia nova).

La durée des saisons et les lois de Kepler

Premiére loi : les planétes du Systéme solaire ont des
orbites planes elliptiques dont le Soleil occupe un foyer.
Deuxi¢me loi : le mouvement d’une planéte sur son orbite
se fait a vitesse aréolaire constante?.

La figure 3 illustre les deux premiéres lois de Kepler. Le
plan orbital (écliptique) est un plan considéré comme fixe
par rapport aux étoiles extérieures au Systéme solaire.
La constance de la vitesse aréolaire de la Terre peut étre
traduite par 1’égalité des rapports

A/ -t)=A/({t,-t)=A/T

aire totale A

aire A1

période T
— T

Pour simplifier, nous admettrons 1’égalité de la période
orbitale T et de I’année tropique T, sous le méme vocable
« année » et dont la valeur approchée est celle de I’année
julienne de 365,25 jours.

L’application de la loi des aires a la figure 2 permet
d’affirmer, en appelant S le centre du Soleil, foyer de
Pellipse orbite de la Terre, que les durées des saisons
sont proportionnelles aux aires des secteurs d’ellipse :
A(S,SE))/T, =A(E;SS)/T,

=A(S,SE)/T, = A(E,SS ))/T, = A(ellipse)/T,_ .

Envue de ’introduction de I’équation de Kepler (ci-apres),
il est commode de simplifier ’analyse en recherchant
une configuration de symétrie, dans laquelle la ligne des
solstices est confondue avec I’axe des apsides.

2 Vitesse aréolaire : vitesse de balayage d’une aire par un rayon (wik-
tionnaire).

Or, la « ligne des équinoxes » (E SE,) effectue, par rapport
aux étoiles lointaines, une tres lente rotation dans le plan de
I’écliptique, dans le sens rétrograde : c’est le phénomene
de précession des équinoxes. La « ligne des solstices »
(S$,SS,), perpendiculaire a la ligne des équinoxes, est
animée du méme mouvement de précession, a raison de
50,29 secondes d’arc par an, soit environ 1,40 degré par
siecle.

En nous décalant vers le passé de quelques siécles, nous
trouvons la configuration recherchée pour les années
particuliéres situées vers le milieu du XIII¢ si¢cle de notre
ere (figure 4). Nous choisissons d’appliquer la loi des
aires pour I’année 1238 (calendrier julien).
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Par raison de symétrie, les aires A(S,SE,)) et A(S,SE))
sont égales ; donc, en théorie, les durées de I’automne et
de I’hiver sont égales.

De méme, les durées de 1’été et du printemps sont égales
en théorie car A(S,SE,) = A(S,SE)).

La consultation des éphémérides permet de vérifier ces
égalités :

T,=89,333j;T =93,291j ;T,=93,285) et T =89,329].
Soit : Tp - T,=0,006j; T —T = 0,004 j (écarts de
quelques minutes).

Entre les deux solstices d’hiver consécutifs, 1’intervalle
est de 365 jours 5 heures 43 minutes.

Encadré 1
Notations et propriétés de I’ellipse (figure 5)

Le grand axe de symétrie est [GG’], de longueur 2a.

Le petit axe de symétrie est [BB’] de longueur 2b.

Les foyers F et F’ sont sur [GG’] et équidistants du centre O
de I’ellipse. On note 2¢ ( = FF’) la distance focale.

Par définition, ’excentricité e de Dellipse est le rapport

c/a. L’excentricité e est comprise entre zéro (inclus ; cas du

cercle) et 1 (exclu ; cas de la parabole).
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Pour tout point P sur I’ellipse : PF + PF’=2a.

Si P est en B, BF + BF’ = 2a et par symétrie, BF = a.
On peut établir plusieurs relations entre a, b, cete :
a2=b2+c2;b2=al-e?) oub=aV(1 - e?).

La perpendiculaire au grand axe passant par F coupe
I’ellipse en deux points H et H’. La longueur FH est le
parametre de I’ellipse, noté p.

Dans le triangle HFF’ : p? + (2¢)* = HF % ;

or HF’=2a—p;donc:p=a+(1-e?),ctp=>b%a.

L’équation polaire de I’ellipse, avec FP notée r et I’angle
(FX, FP) noté s est : r =p/(1 + e*cos s)

On passe d’une ellipse a un cercle par une transformation
appelée affinité : x est inchangé et y est multiplié par a/b.
Ainsi le point P est transformé en K avec NK = NPxa/b.
Si x est inchangé et y est multiplié par a/b, les aires
seront également multipliées par a/b.

Inversement, on passe du cercle a I’ellipse par une affini-
té de rapport b/a. Les aires étant aussi multipliées par b/a,
I’aire du disque ma? devient mab.

L’aire A de la portion de plan intérieure a I’ellipse est le
produit wab .

Introduction de I'anomalie excentrique (E)
d’un point sur une ellipse

La superposition des figures 4 et 5 place le Soleil en F, les
¢quinoxes E, et E, aux points H et H” de I’ellipse, G est le
périhélie et G’ est I’aphélie de I’orbite.
Ladurée (notée T ) quis’ecoule de I’équinoxe d’automne
a I’équinoxe de printemps suivant ; elle est la somme des
durées de ’automne et de ’hiver : T, =T +T, .
De la loi des aires, il découle :

A(GHFH’G)/T ,, = A(ellipse)/T ; ou

A(GHFH’G)/ A(ellipse) =T, /T.

Ce rapport, not¢ R(e) ensuite, est une fonction de
I’excentricité e de [’ellipse, considérée comme une
variable. Si e =0, le foyer F est confondu avec O, I’ellipse
est un cercle, les saisons ont la méme durée, et R = 1/2.
Si e est proche de I’unité (cas des cométes), le foyer F est
proche de G, et R est proche de zéro.
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Etablissement de la relation R(e) (figure 6) :

L’aire A(GHFH’G) est celle de la zone en jaune.
Par I’affinité de rapport a/b, (encadré 1) le segment [HH’]
est prolongé et devient la corde [KK’] du cercle. Et
A(GKFK’G) / A(GHFH’G) = a/b.
Il est possible d’exprimer simplement ’aire de la portion
de disque comprise entre I’arc KGK” et la corde KFK’ en
fonction de ’angle au centre GOK, noté E. Cet angle
(repere orange) est I’anomalie excentrique associée au
point H de I’ellipse. Dans I’intervalle de définition de e, E
est compris entre zéro (e = 1) et /2 radian (e = 0).
La longueur de la corde [KK’] est égale a 2-p-a/b, soit 2b
(car p=FH = b?a, d’apres I’encadré 1)

De manicére évidente : A(GKFK’G)
= A(secteur circulaire OKK”) — A(triangle OKK”).
Or A(secteur circulaire OKK’) = (E/n)- A(disque) soit Ea?
avec E en radians ;
et A(triangle OKK’) =b-c;
On trouve donc : A(GKFK’G)=E-a>-b-c
Orb=FK=asinE,etc=0F=a-e;
donc A(GKFK’G) =a*(E—e.sinE).
Comme A(GHFH’G) (b/a): A(GKFK’G) et avec
A (ellipse) = m-a-b, on trouve finalement :
R(e) =(1/n )«(E —esin E) (1).

Par définition : R(e)=T /T

Par symetrie (figure 4) : T, =T =T _ /2.

Donc: E—esin E=2n-T/T (en radians).

Cette relation, entre la durée T, d’une saison terrestre
(hiver) et I’anomalie excentrique E du point équinoxial
E, (de I’an 1238), peut étre géneralisée. C’est I’objet du
paragraphe suivant.

On peut vérifier la formule (1) avec la valeur de e actuelle :
e = 0,016710 (donnée J 2000) ;
E=1,5541 (rad) et R(e) = 0,489 4

cos E =c/a=-¢e d’ou
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Par ailleurs, le rapport T _, /T, calculé numériquement avec
les durées des saisons de 1238, donne : R(e) = 0,489 2.
La comparaison des deux rapports suppose que
I’excentricité e soit constante sur plusieurs siécles. On
I’admettra®. La différence relative entre ces deux rapports
est inférieure a 5-10.

L'équation de Kepler

Aprés avoir introduit précédemment [’anomalie
excentrique E d’un point H dans un cas particulier, nous
¢tudions ici le cas général. La Terre est en un point P
quelconque de son orbite elliptique (en bleu sur la figure
7). P est repéré par 1’angle polaire s(t) (angle (FX, FP)),
et r(t) (= FP), fonctions du temps.

L’angle s(2) est aussi nommé anomalie vraie de la planéte
P

Soit K I’intersection du prolongement de [NP] au-dela de
P avec le cercle de centre O et de rayon a.

L’anomalie excentrique E(t) est définie comme dans le
paragraphe précédent. C’est I’angle au centre GOK,
fonction du temps liée a s(t).

La symétrie invite a se limiter a une demi-orbite, par
exemple du passage par le périhélie G (avec s(0) = 0)
jusqu’au passage par I’aphélie G’ (avec s (T/2) = = (rad)).
La vitesse aréolaire vaut w-a-b/T.

Comme préalable, on introduit un marqueur graphique de
I’écoulement du temps. Pour cela, on ajoute a la figure
6 le cercle (rouge) de centre F (position du Soleil) et
de rayon a, sur lequel se déplace un astre fictif (J) avec
une vitesse angulaire constante. La période du mobile
J est égale a T, la méme que celle de la planéte P. Son
mouvement est synchronisé avec le mouvement de
la planéte P (passages sur ’axe OX aux instants t = 0,
t="T/2,t =T, etc.). La vitesse aréolaire de 1’astre J est
constante et vaut w-a%T.

3 https://planet-terre.ens-lyon.fr/ressource/milankovit-
ch-2005.xml
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J est repéré par I’angle au centre (FX, FJ), noté M, et
nommé anomalie moyenne de la planéte P.
M@ =2nt/T
L’équation de Kepler est la relation suivante entre les
anomalies E et M (en radians) :
E — e.sin E = M (démonstration encadré 2).

Encadré 2 (figure 7)
Démonstration de I’équation de Kepler

On exprime d’abord d’une premicre manicere 1’aire du sec-
teur elliptique FGP (colorié en cyan), notée A(t). D’apres la
loi des aires : A(t) =m-a-b-t/T.

On exprime ensuite d’une seconde maniere 1’aire du méme
secteur elliptique FGP, en fonction d’aires de triangles et de
secteurs circulaires.

Le rapport d’affinité est b/a, donc :

A(t) = (b/a)- A(FGK) = (b/a) [A(OGK) — A(OFK)].
A(OGK) = nta?>xE/2nt = E-a?/2.

A(OFK) = OFxNK/2 = c¢x(a-sin E)/2 = e-a* (sin E)/2.
Donc : A(t) = (b/a)-(a%/2).(E —e-sin E).

L’égalité des deux expressions de A(t) donne 1I’équation de
Kepler : E —e-sin E =2n-t/T = M(t) (c.q.f.d.).

L’équation de Kepler permet en principe de répondre aux
deux problématiques posées au début de 1’article.

Dans le premier cas (I’inconnue est la position de la plancte
a une date donnée), la grande difficulté vient du fait que
la relation entre E et M(t) est une équation transcendante.
Dans le second cas (I’inconnue est la date de passage de la
planéte a une position donnée), la résolution de I’équation
ne présente pas de difficulté particulicre.

La connaissance de E permet d’établir les valeurs de r(E)
et s(E) (relations dans ’encadré 3).

Des méthodes de résolution ont été proposées au cours de
I’histoire, par Kepler, Newton, Lagrange, et par Halley
pour les cométes, et sont encore développées a I’époque
moderne avec 1’aide des calculateurs.

Encadré 3 Calculderets
Expression de r(E)
Dans le triangle FNK (figure 7) :

NP=r-sin s = (b/a)-NK = b-sin E.
EtNF=rcoss=ON-OF=acosE—awe

=a-(cos E—e).

Donc : 1> = NF? + NP? = a?:(cos E — e)? + b?'sin? E.
Comme b? = a?:(1 — e?), apres simplification, on trouve
(r>0): WE)=a(l-ecosE).

Expressions des fonctions circulaires de s(E) :
En remplagant r par son expression r(E) dans la formule cos
s = (a/r).(cos E—¢), on trouve : :
cos s =a/r(cos E —¢)
coss=(cos E—e)/(l —ecosE),
sin s = b sin E /r = (b/a)-(a/r)sin E
sin s = [N(I - ¢?)-sin E}/(1 — e-cos E).
Avec ces deux relations, et sachant que
tan s = 2-t/(1 —t?), avec t = tan(s/2), on montre que :
tan(s/2) = e-tan(E/2),

avec &= V(1 +e)/(1 —e).
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Résolution de I’équation de Kepler pour les
ellipses de faible excentricité (e << 1)

Forme analytique approchée de E(M)
La fonction f(t) = M est périodique et impaire.
11 suffit de I’étudier sur [0, T/2].
En partant de la forme E =M + e'sin E, on calcule
sin E = sin (M + e-sin E)
= sin M-cos(e-sin E) + cos M-sin(e-sin E).
Comme sin E est compris entre 0 et 1, e-sin E est considéré
comme trés inférieur a 1, et ’on prend les équivalents :
sin X = X (en radians) et cos x = 1, pour 0 <x << 1. Alors :
sin Exsin M +ecos M'sinE .
Il s’ensuit une expression approchée de sin E :
sin E = (sin M)/(1 — e-cos M).

De méme : cos E = cos (M + e-sin E)
= cos M-cos(e-sin E) — sin M-sin(e-sin E).
Une premicre forme approchée de cos E est donc :

cos M —e-sin M-sin E ; ou encore :

[cos M (1 —e-cos M) — e-sin?M]/(1 — e-cos M).
On obtient donc :
cos E=(cos M —¢)/(1 —e-cos M)
Et en combinant les deux formes approchées :
tan E = (sin M)/(cos M —¢)
A partir des expressions précédentes, en multipliant
numérateur et dénominateur par (1 + e-cos M), et en
négligeant les termes en €2, on trouve d’autres équivalents,
par exemple :
sin E = (sin M)+(1 + e-cos M).

En remplagant dans 1’équation de Kepler sin E par cette
derniére expression approchée, on trouve finalement :
E=~M +e-sin M.
On remarque que la différence E — M est de ’ordre
de grandeur de e. Comme M(t) est connu, I’anomalie
excentrique E(t) apparait ainsi comme une fonction
explicite du temps.

Formes analytiques approchées de r(M) et
s(M)

Pour trouver une expression simplifiée de r, on peut
calculer la dérivée de E(M) par rapport a M de deux
manicres différentes :
En dérivant I’équation de Kepler, par rapport a M, il
dE/dM —e-cos E-dE/dM = 1
ou: dE/dM = 1/(1 —e-cos E) = a/r
En dérivant ExM +e-sin M : dE/dM = 1 + e:cos M
En comparant les deux expressions, il vient :

r(M) = a/(1 + e:cos M).
our(M)~a-(1—e-cos M).
On peut comparer les angles s et M en calculant sin(s — M)
afin d’exprimer s en fonction de M.
En développant :
sin(s — M) = sin s:cos M — sin M-cos s .
Dans les formules de cos s et sin s (encadré 3), on remplace

vient :
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E par son expression approchée en fonction de M, et on
néglige tous les termes de degré supérieur a 1 en e. On
trouve (apres un calcul fastidieux) : sin(s — M) = 2e.sin M.
Et en confondant sin(s — M) avec son argument (en
radians), finalement :  s(M) = M + 2e.sin M.

Cas de la Terre

Dans un référentiel géocentrique, toutes les analyses
précédentes restent valides, a condition de permuter les
roles de la Terre et du Soleil. La Terre est en F, le Soleil
(vrai) est en P, et J est un Soleil fictif.

Si I’excentricité de I’orbite apparente du Soleil était nulle,
le Soleil vrai serait constamment dans la méme direction
que le Soleil fictif. Comme I’excentricité de 1’orbite est
trés faible devant 1’unité, proche de 1/60 (e = 0,016 710
actuellement), la direction d’observation du Soleil vrai
(FP) au cours de I’année ne s’écarte jamais beaucoup de
la direction (FJ) qui permet de suivre le Soleil fictif (sur
I’écliptique). Cet écart angulaire est la valeur de 1’angle
(FP, FJ) (figure 7), soit :

s(t) — M(t) = 2e-sin(2rat/T) .

L’écart angulaire s(t) — M(t) entre le Soleil vrai et le Soleil
fictif est Pune des deux composantes de I’équation du
temps (voir Cahiers Clairaut n® 108 page 7). Il estde forme
quasi sinusoidale, avec une amplitude 2e = 0,033 42 (rad)
soit 1,915°. Cette amplitude est associée a un décalage
temporel d’environ 7 min 40 s pour les passages des deux
soleils au méridien local d’un observateur terrestre (figure
8 ; courbe en tirets bleus).
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200
Date (jour)
Fig.8. (crédit ASM1; https://media4.obspm.fr/public/res-

sources_lu/pages_ complements-ephemerides/equation-temps_
impression.html)
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Résolution de I'’équation de Kepler par la
méthode éponyme

(voir le livre de Jean Meeus Calculs astronomiques a
['usage des amateurs SAF ; chapitre 20)

M¢thode itérative : ¢tude de la suite {u } telle que :

u =M +e-sinu (termes en radians). X
Si cette suite admet une limite L, celle-ci vérifie :
L=M+esinL; donc L=E.

Pour simplifier (choix arbitraires), on choisit :
€=0,5;M=mn/2rad (t=T/4)etu,=0.

Donc u, =M = 1,570 796 ;

Les termes suivants sont aussi arrondis a 10 prés : (M = =/2)
w, =M +e'sin M =n/2 + 1/2=2,070 796 ; . il

soit u, =71/2 + (1/2)-cos(1/2) = 2,009 587 ;

u, = /2 + (1/2)-cos[(1/2)-cos(1/2)] = 2,023 429 ; Cette méthode est inadaptée au cas des comeétes (e proche

et ainsi de suite : u, = 2,019 445 ; etc. de 1).

et pour toutn> 10, u = 2,020 980. 1l existe d’autres méthodes de résolution de 1’équation de

Donc : E= 2,020 980 (rad) = 115° 48°. Kepler qu’il serait trop long de développer ici (méthode
de Newton Raphson, méthode de Lagrange). Vous les

La figure 9 illustre ce cas particulier. trouverez en complément de ce numéro dans | article

En utilisant les formules de I’encadré 3, on calcule setr. ~ complet sur le site clea-astro.eu (cliquer sur CC177).
Avec la relation entre tan(E/2) et tan(s/2), et pour

e=7(1+e)/(1 —e)=13, on obtient : s = 140° I1". Les applications astronomiques de 1’équation de Kepler
Avecr/a=1-e-cosE, etcos E=—0,435 131, onobtient: consacrées a la cométe de Halley et a la sonde Giotto
ra=1217 565. feront I’objet d’un autre article dans un prochain numéro.

|
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