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ARTICLE DE FOND

INTRODUCTION À L'ÉQUATION 
DE KEPLER

Daniel Descout, Deuil-la-Barre

Comment savoir où se trouve une planète sur son orbite à un instant donné ? Le problème n’est pas simple, il faut 
pour cela résoudre une équation établie par Kepler pour les orbites elliptiques. Après avoir présenté cette équation à 

partir de la longueur des saisons, quelques méthodes de résolution sont proposées.

Photographiée en 1990 par la sonde Voyager-I située au-
delà de l’orbite de Neptune, la Terre apparaît, selon le mot 
de Carl Sagan, comme « un grain de poussière suspendu 
dans un rayon de soleil » (figure 1). Habitants de ce « point 
bleu pâle  », nous essayons, depuis des générations, de 
comprendre les détails de la course apparente du Soleil 
devant les autres étoiles.

Johannes Kepler, au début du XVIIe siècle, a fait un pas 
de géant en proposant ses trois lois, qui précisent le 

mouvement des planètes dans un modèle héliocentrique. 
C’est le dossier de ce numéro des Cahiers Clairaut.
Il a aussi proposé une équation éponyme qui permet de 
répondre à deux problématiques. D’une part, connaissant 
l’orbite d’une planète autour du Soleil, et la position de 
la planète à une date donnée, en déduire sa position 
à une date quelconque. D’autre part, avec les mêmes 
prémisses, et réciproquement, en déduire la date du 
passage de la planète à une position quelconque de son 
orbite. 
Après une introduction de l’équation de Kepler à partir 
de la comparaison des durées des saisons terrestres, nous 
aborderons quelques méthodes de résolution de cette 
équation. Les applications astronomiques de l’équation 
de Kepler feront l’objet d’un article distinct dans un 
prochain numéro.

De l’inégalité des durées des saisons astro-
nomiques

La détermination des saisons est le résultat des 
observations astronomiques de la position du Soleil sur la 
voûte céleste vue depuis la Terre. La course du centre du 
Soleil définit l’écliptique. Les intersections de l’écliptique 
avec l’équateur céleste définissent les deux équinoxes. 
Les deux solstices correspondent aux instants de l’année 

pour lesquels la déclinaison du Soleil est stationnaire. 
Ces définitions étant données, il suffit de connaître 
la longitude écliptique du Soleil pour déterminer les 
quatre événements fixant le début de chaque saison 
astronomique  : longitudes zéro et 180 degrés (ou π 
radians) pour les équinoxes de printemps et d’automne, 
90 degrés (ou π/2 radian) et 270 degrés (ou 3π/2 radians) 
pour les solstices d’été et d’hiver. Ensuite, le passage d’un 
référentiel géocentrique à un référentiel héliocentrique 
permet de situer ces quatre événements comme les 
passages à quatre positions remarquables de la Terre sur 
son orbite autour du Soleil (événements représentés sur 
la figure 2).

Les durées des saisons astronomiques de l’année 2022 sont 
issues des données du calculateur de l’IMCCE1 (notation 
décimale en jours, notés j) :
Hiver 2022 (entre S1 et E1)  : 88,982 j (durée notée Th 
ensuite) ;
Printemps 2022  (entre E1 et S2) : 92,736 j (durée notée 
Tp ensuite) ;
Été 2022 (entre S2 et E2)  : 93,660 j (durée notée Té 
ensuite) ;
Automne 2022 (entre E2 et S1) : 89,864 j (durée notée Ta 
ensuite).

1   https://promenade.imcce.fr/fr/pages4/439.html

Fig.1.

Fig.2.
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L’arrondi au millième de jour correspond à une 
approximation de l'ordre de la minute.
Les durées des saisons sont inégales, variant de 89 jours 
pour la plus courte (l’hiver) à plus de 93 jours pour la plus 
longue, l’été. Ces différences sont dues à la variabilité de 
la vitesse orbitale de la Terre autour du Soleil, associée 
à la variabilité de la distance Terre - Soleil (modélisée 
par Johannes Kepler, et exprimée dans ses deux premières 
lois ; 1609, Astronomia nova).

La durée des saisons et les lois de Kepler

Première loi  : les planètes du Système solaire ont des 
orbites planes elliptiques dont le Soleil occupe un foyer.
Deuxième loi : le mouvement d’une planète sur son orbite 
se fait à vitesse aréolaire constante2.

La figure 3 illustre les deux premières lois de Kepler. Le 
plan orbital (écliptique) est un plan considéré comme fixe 
par rapport aux étoiles extérieures au Système solaire. 
La constance de la vitesse aréolaire de la Terre peut être 
traduite par l’égalité des rapports 

A1 / (t’1 – t1) = A2 / (t’2 – t2) = A / T

Pour simplifier, nous admettrons l’égalité de la période 
orbitale T et de l’année tropique Ttr sous le même vocable 
« année » et dont la valeur approchée est celle de l’année 
julienne de 365,25 jours.

L’application de la loi des aires à la figure 2 permet 
d’affirmer, en appelant S le centre du Soleil, foyer de 
l’ellipse orbite de la Terre, que les durées des saisons 
sont proportionnelles aux aires des secteurs d’ellipse  : 
A(S1SE1)/Th = A(E1SS2)/Tp 
= A(S2SE2)/Té = A(E2SS1)/Ta = A(ellipse)/Ttr .

En vue de l’introduction de l’équation de Kepler (ci-après), 
il est commode de simplifier l’analyse en recherchant 
une configuration de symétrie, dans laquelle la ligne des 
solstices est confondue avec l’axe des apsides.

2   Vitesse aréolaire : vitesse de balayage d’une aire par un rayon (wik-
tionnaire).

Or, la « ligne des équinoxes » (E1SE2) effectue, par rapport 
aux étoiles lointaines, une très lente rotation dans le plan de 
l’écliptique, dans le sens rétrograde : c’est le phénomène 
de précession des équinoxes. La «  ligne des solstices » 
(S1SS2), perpendiculaire à la ligne des équinoxes, est 
animée du même mouvement de précession, à raison de 
50,29 secondes d’arc par an, soit environ 1,40 degré par 
siècle. 
En nous décalant vers le passé de quelques siècles, nous 
trouvons la configuration recherchée pour les années 
particulières situées vers le milieu du XIIIe siècle de notre 
ère  (figure 4). Nous choisissons d’appliquer la loi des 
aires pour l’année 1238 (calendrier julien). 

Par raison de symétrie, les aires A(S1SE2) et A(S1SE1) 
sont égales ; donc, en théorie, les durées de l’automne et 
de l’hiver sont égales.
De même, les durées de l’été et du printemps sont égales 
en théorie car A(S2SE2) = A(S2SE1). 	
La consultation des éphémérides permet de vérifier ces 
égalités :
Th = 89,333 j ; Tp = 93,291 j  ; Té = 93,285 j  et Ta = 89,329 j .
Soit  : Tp  –  Té  =  0,006 j ; Th  –  Ta  =  0,004 j (écarts de 
quelques minutes).
Entre les deux solstices d’hiver consécutifs, l’intervalle 
est de 365 jours 5 heures 43 minutes.

Encadré 1 
Notations et propriétés de l’ellipse (figure 5)

Le grand axe de symétrie est [GG’], de longueur 2a.
Le petit axe de symétrie est [BB’] de longueur 2b. 
Les foyers F et F’ sont sur [GG’] et équidistants du centre O 
de l’ellipse. On note 2c ( = FF’) la distance focale. 
Par définition, l’excentricité e de l’ellipse est le rapport 
c/a. L’excentricité e est comprise entre zéro (inclus ; cas du 
cercle) et 1 (exclu ; cas de la parabole).

Fig.3.

Fig.4.
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Pour tout point P sur l’ellipse : PF + PF’ = 2a.	   
Si P est en B, BF + BF’ = 2a et par symétrie, BF = a. 
On peut établir plusieurs relations entre a, b, c et e :
a² = b² + c² ; b² = a²(1-e²) ou b = a·√(1 - e²).

La perpendiculaire au grand axe passant par F coupe 
l’ellipse en deux points H et H’. La longueur FH est le 
paramètre de l’ellipse, noté p.
Dans le triangle HFF’ : p² + (2c)² = HF’² ; 
or HF’ = 2a – p ; donc : p = a·(1 – e²), et p = b²/a.

L’équation polaire de l’ellipse, avec FP notée r et l’angle 
(FX, FP) noté s est : r = p/(1 + e·cos s) 

On passe d’une ellipse à un cercle par une transformation 
appelée affinité : x est inchangé et y est multiplié par a/b. 
Ainsi le point P est transformé en K avec NK = NP×a/b.
Si x est inchangé et y est multiplié par a/b, les aires 
seront également multipliées par a/b.
Inversement, on passe du cercle à l’ellipse par une affini-
té de rapport b/a. Les aires étant aussi multipliées par b/a, 
l’aire du disque pa² devient pab.
L’aire A de la portion de plan intérieure à l’ellipse est le 
produit πab .

Fig.5.

Introduction de l’anomalie excentrique (E) 
d’un point sur une ellipse

La superposition des figures 4 et 5 place le Soleil en F, les 
équinoxes E1 et E2 aux points H et H’ de l’ellipse, G est le 
périhélie et G’ est l’aphélie de l’orbite.
La durée (notée Ta+h) qui s’écoule de l’équinoxe d’automne 
à l’équinoxe de printemps suivant ; elle est la somme des 
durées de l’automne et de l’hiver : Ta+h = Ta + Th .
De la loi des aires, il découle : 

A(GHFH’G)/Ta+h = A(ellipse)/T ; ou 
A(GHFH’G)/ A(ellipse) = Ta+h/T.

Ce rapport, noté R(e) ensuite, est une fonction de 
l’excentricité e de l’ellipse, considérée comme une 
variable. Si e = 0, le foyer F est confondu avec O, l’ellipse 
est un cercle, les saisons ont la même durée, et R = 1/2. 
Si e est proche de l’unité (cas des comètes), le foyer F est 
proche de G, et R est proche de zéro.

Établissement de la relation R(e) (figure 6) :
L’aire A(GHFH’G) est celle de la zone en jaune.
Par l’affinité de rapport a/b, (encadré 1) le segment [HH’] 
est prolongé et devient la corde [KK’] du cercle. Et 
A(GKFK’G) / A(GHFH’G) = a/b.
Il est possible d’exprimer simplement l’aire de la portion 
de disque comprise entre l’arc KGK’ et la corde KFK’ en 
fonction de l’angle au centre GOK, noté E. Cet angle 
(repère orange) est l’anomalie excentrique associée au 
point H de l’ellipse. Dans l’intervalle de définition de e, E 
est compris entre zéro (e ≈ 1) et π/2 radian (e = 0). 
La longueur de la corde [KK’] est égale à 2·p·a/b, soit 2b 
(car p = FH = b2/a, d’après l’encadré 1)

De manière évidente : A(GKFK’G) 
= A(secteur circulaire OKK’) – A(triangle OKK’).
Or A(secteur circulaire OKK’) = (E/π)·A(disque) soit Ea² 
avec E en radians ; 
et A(triangle OKK’) = b·c ;
On trouve donc : A(GKFK’G) = E·a² – b·c 
Or b = FK = a·sin E , et c = OF = a·e ;
donc A(GKFK’G) = a²·(E – e.sin E) . 
Comme A(GHFH’G)  =  (b/a)·A(GKFK’G)  et avec 
A (ellipse) = π·a·b, on trouve finalement :
	 R(e) = (1/π )·(E – e·sin E) (1).

Par définition  : R(e) = Ta+h/T.
Par symétrie (figure 4) : Th = Ta = Ta+h/2.
Donc :	 E – e·sin E = 2·π ·Th/T  (en radians).
Cette relation, entre la durée Th d’une saison terrestre 
(hiver) et l’anomalie excentrique E du point équinoxial 
E1 (de l’an 1238), peut être généralisée. C’est l’objet du 
paragraphe suivant.

On peut vérifier la formule (1) avec la valeur de e actuelle :
e = 0,016710  (donnée J  2000)  ; cos E = c/a = e d’où 
E ≈ 1,554 1 (rad) et R(e) ≈ 0,489 4

Fig.6.
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Par ailleurs, le rapport Ta+h/T, calculé numériquement avec 
les durées des saisons de 1238, donne : R(e) = 0,489 2. 
La comparaison des deux rapports suppose que 
l’excentricité e soit constante sur plusieurs siècles. On 
l’admettra3. La différence relative entre ces deux rapports 
est inférieure à 5·10-4.

L’équation de Kepler

Après avoir introduit précédemment l’anomalie 
excentrique E d’un point H dans un cas particulier, nous 
étudions ici le cas général. La Terre est en un point P 
quelconque de son orbite elliptique (en bleu sur la figure 
7). P est repéré par l’angle polaire s(t) (angle (FX, FP)), 
et r(t) (= FP), fonctions du temps.
L’angle s(t) est aussi nommé anomalie vraie de la planète 
P.
Soit K l’intersection du prolongement de [NP] au-delà de 
P avec le cercle de centre O et de rayon a. 
L’anomalie excentrique E(t) est définie comme dans le 
paragraphe précédent. C’est l’angle au centre GOK, 
fonction du temps liée à s(t).
La symétrie invite à se limiter à une demi-orbite, par 
exemple du passage par le périhélie G (avec s(0)  =  0) 
jusqu’au passage par l’aphélie G’ (avec s (T/2) = π (rad)). 
La vitesse aréolaire vaut π·a·b/T.

Comme préalable, on introduit un marqueur graphique de 
l’écoulement du temps. Pour cela, on ajoute à la figure 
6 le cercle (rouge) de centre F (position du Soleil) et 
de rayon a, sur lequel se déplace un astre fictif (J) avec 
une vitesse angulaire constante. La période du mobile 
J est égale à T, la même que celle de la planète P. Son 
mouvement est synchronisé avec le mouvement de 
la planète P (passages sur l’axe OX aux instants t = 0, 
t = T/2, t = T, etc.). La vitesse aréolaire de l’astre J est 
constante et vaut π·a²/T.	

3   https://planet-terre.ens-lyon.fr/ressource/milankovit-
ch-2005.xml

J est repéré par l’angle au centre (FX, FJ), noté M, et 
nommé anomalie moyenne de la planète P. 

M(t) = 2π·t/T
L’équation de Kepler est la relation suivante entre les 
anomalies E et M (en radians) : 	

E – e.sin E = M (démonstration encadré 2).
.
Encadré 2 (figure 7)

Démonstration de l’équation de Kepler
On exprime d’abord d’une première manière l’aire du sec-
teur elliptique FGP (colorié en cyan), notée A(t). D’après la 
loi des aires : A(t) = p·a·b·t/T.
On exprime ensuite d’une seconde manière l’aire du même 
secteur elliptique FGP, en fonction d’aires de triangles et de 
secteurs circulaires.
Le rapport d’affinité est b/a, donc :
 A(t) = (b/a)·A(FGK) = (b/a)·[A(OGK) – A(OFK)]. 
A(OGK) = pa²×E/2p = E·a²/2.
A(OFK) = OF×NK/2 = c×(a·sin E)/2 = e·a²·(sin E)/2.
Donc : A(t) = (b/a)·(a²/2).(E – e·sin E).
L’égalité des deux expressions de A(t) donne l’équation de 
Kepler : E – e·sin E = 2p·t/T = M(t)  (c.q.f.d.).

L’équation de Kepler permet en principe de répondre aux 
deux problématiques posées au début de l’article.
Dans le premier cas (l’inconnue est la position de la planète 
à une date donnée), la grande difficulté vient du fait que 
la relation entre E et M(t) est une équation transcendante. 
Dans le second cas (l’inconnue est la date de passage de la 
planète à une position donnée), la résolution de l’équation 
ne présente pas de difficulté particulière.
La connaissance de E permet d’établir les valeurs de r(E) 
et s(E) (relations dans l’encadré 3).
Des méthodes de résolution ont été proposées au cours de 
l’histoire, par Kepler, Newton, Lagrange, et par Halley 
pour les comètes, et sont encore développées à l’époque 
moderne avec l’aide des calculateurs.
Encadré 3            Calcul de r et s
Expression de r(E) 
Dans le triangle FNK (figure 7) :
    NP= r·sin s = (b/a)·NK = b·sin E.
Et NF = r·cos s = ON – OF = a·cos E – a·e 
          = a·(cos E – e).
Donc : r² = NF² + NP² = a²·(cos E – e)² + b²·sin² E.
Comme b² = a²·(1 – e²), après simplification, on trouve 
(r > 0) : 	r(E) = a·(1 – e·cos E). 

Expressions des fonctions circulaires de s(E) :
En remplaçant r par son expression r(E) dans la formule  cos 
s = (a/r).(cos E – e) , on trouve :  :  
cos s = a/r·(cos E – e)
cos s = (cos E – e)/(1 – e·cos E) ;
sin s = b sin E /r = (b/a)·(a/r)·sin E
sin s = [√(1 – e²))·sin E]/(1 – e·cos E).
Avec ces deux relations, et sachant que 
tan s = 2·t/(1 – t²), avec t = tan(s/2), on montre que :
	 tan(s/2) = ε·tan(E/2),
 avec ε = √(1 + e)/(1 – e). 		

Fig.7.
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Résolution de l’équation de Kepler pour les 
ellipses de faible excentricité (e << 1)

Forme analytique approchée de E(M) 
La fonction f(t) = M est périodique et impaire.
 Il suffit de l’étudier sur [0, T/2].
En partant de la forme E = M + e·sin E, on calcule 
sin E = sin (M + e·sin E) 
= sin M·cos(e·sin E) + cos M·sin(e·sin E).
Comme sin E est compris entre 0 et 1, e·sin E est considéré 
comme très inférieur à 1, et l’on prend les équivalents : 
sin x ≈ x (en radians) et cos x ≈ 1, pour 0 < x << 1. Alors : 
sin E ≈ sin M + e·cos M·sin E .
Il s’ensuit une expression approchée de sin E : 		

sin E ≈ (sin M)/(1 – e·cos M).
De même : cos E = cos (M + e·sin E)  
= cos M·cos(e·sin E) – sin M·sin(e·sin E).
Une première forme approchée de cos E est donc :

cos M – e·sin M·sin E ; ou encore :
[cos M·(1 – e·cos M) – e·sin²M]/(1 – e·cos M).

On obtient donc :
cos E ≈ (cos M – e)/(1 – e·cos M)

Et en combinant les deux formes approchées : 		
tan E ≈ (sin M)/(cos M – e)

À partir des expressions précédentes, en multipliant 
numérateur et dénominateur par (1  +  e·cos  M), et en 
négligeant les termes en e² , on trouve d’autres équivalents, 
par exemple :

sin E ≈ (sin M)·(1 + e·cos M).
En remplaçant dans l’équation de Kepler sin E par cette 
dernière expression approchée, on trouve finalement :	
E ≈ M + e·sin M. 
On remarque que la différence E  –  M est de l’ordre 
de grandeur de e. Comme M(t) est connu, l’anomalie 
excentrique E(t) apparaît ainsi comme une fonction 
explicite du temps. 

Formes analytiques approchées de r(M) et 
s(M) 

Pour trouver une expression simplifiée de r, on peut 
calculer la dérivée de E(M) par rapport à M  de deux 
manières différentes :
En dérivant l’équation de Kepler, par rapport à M, il 
vient : 	 dE/dM – e·cos E·dE/dM = 1
ou : 	 dE/dM = 1/(1 – e·cos E) = a/r
En dérivant E ≈ M + e·sin M : dE/dM ≈ 1 + e·cos M
En comparant les deux expressions, il vient : 

r(M) ≈ a/(1 + e·cos M).
ou r(M) ≈ a·(1 – e·cos M).
On peut comparer les angles s et M en calculant sin(s – M) 
afin d’exprimer s en fonction de M. 
En développant : 
sin(s – M) = sin s·cos M – sin M·cos s .
Dans les formules de cos s et sin s (encadré 3), on remplace 

E par son expression approchée en fonction de M, et on 
néglige tous les termes de degré supérieur à 1 en e. On 
trouve (après un calcul fastidieux) : sin(s – M) ≈ 2e.sin M. 
Et en confondant sin(s  –  M) avec son argument (en 
radians), finalement :	 s(M) ≈ M + 2e.sin M.

Cas de la Terre 
Dans un référentiel géocentrique, toutes les analyses 
précédentes restent valides, à condition de permuter les 
rôles de la Terre et du Soleil. La Terre est en F, le Soleil 
(vrai) est en P, et J est un Soleil fictif.
Si l’excentricité de l’orbite apparente du Soleil était nulle, 
le Soleil vrai serait constamment dans la même direction 
que le Soleil fictif. Comme l’excentricité de l’orbite est 
très faible devant l’unité, proche de 1/60 (e = 0,016 710 
actuellement), la direction d’observation du Soleil vrai 
(FP) au cours de l’année ne s’écarte jamais beaucoup de 
la direction (FJ) qui permet de suivre le Soleil fictif (sur 
l’écliptique). Cet écart angulaire est la valeur de l’angle 
(FP, FJ) (figure 7), soit : 

s(t) – M(t) = 2e·sin(2π·t/T) .

L’écart angulaire s(t) – M(t) entre le Soleil vrai et le Soleil 
fictif est l’une des deux composantes de l’équation du 
temps (voir Cahiers Clairaut n° 108 page 7). Il est de forme 
quasi sinusoïdale, avec une amplitude 2e = 0,033 42 (rad) 
soit 1,915°. Cette amplitude est associée à un décalage 
temporel d’environ 7 min 40 s pour les passages des deux 
soleils au méridien local d’un observateur terrestre (figure 
8 ; courbe en tirets bleus).

Fig.8. (crédit ASM1; https://media4.obspm.fr/public/res-
sources_lu/pages_ complements-ephemerides/equation-temps_

impression.html)
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Résolution de l’équation de Kepler par la 
méthode éponyme

(voir le livre de Jean Meeus Calculs astronomiques à 
l’usage des amateurs SAF ; chapitre 20)

Méthode itérative  : étude de la suite {un} telle que  : 
un+1 = M + e·sin un (termes en radians).
Si cette suite admet une limite L, celle-ci vérifie  : 
L = M + e·sin L ; donc L = E.
Pour simplifier (choix arbitraires), on choisit :
e = 0,5 ; M = π/2 rad (t = T/4) et u0 = 0. 
Donc u1 = M = 1,570 796 ; 
Les termes suivants sont aussi arrondis à 10-6 près :
u2 = M + e·sin M = π/2 + 1/2 = 2,070 796 ; 
u3 = M + e·sin(u2) = M + e·sin(M + e·sin M) ; 
soit u3 = π/2 + (1/2)·cos(1/2) = 2,009 587 ;
u4 = π/2 + (1/2)·cos[(1/2)·cos(1/2)] = 2,023 429 ;
 et ainsi de suite : u5 = 2,019 445 ; etc.
et pour tout n ≥ 10, un ≈ 2,020 980.
Donc : E =  2,020 980 (rad) = 115° 48’.

La figure 9 illustre ce cas particulier.
En utilisant les formules de l’encadré 3, on calcule s et r.
Avec la relation entre tan(E/2) et tan(s/2), et pour 
ε = √(1 + e)/(1 – e) = √3, on obtient : s = 140° 11’.
Avec r/a = 1 – e·cos E, et cos E = – 0,435 131, on obtient :

r/a = 1,217 565.

Cette méthode est inadaptée au cas des comètes (e proche 
de 1).
Il existe d’autres méthodes de résolution de l’équation de 
Kepler qu’il serait trop long de développer ici (méthode 
de Newton Raphson, méthode de Lagrange). Vous les 
trouverez en complément de ce numéro dans l’article 
complet sur le site clea-astro.eu (cliquer sur CC177).

Les applications astronomiques de l’équation de Kepler 
consacrées à la comète de Halley et à la sonde Giotto 
feront l’objet d’un autre article dans un prochain numéro.

n

Fig.9.


